設(shè)
a
b
為向量,若
a
+
b
a
的夾角為
π
3
,
a
+
b
b
的夾角為
π
4
,則
|
a
|
|
b
|
=
 
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:畫出圖形,結(jié)合圖形,應(yīng)用正弦定理,容易解出答案.
解答: 解:設(shè)
AB
=
a
AD
=
b
,
a
+
b
a
的夾角為
π
3
a
+
b
b
的夾角為
π
4
,
∴∠CAB=
π
3
,∠ACB=
π
4

由正弦定理,得
AB
sin∠ACB
=
BC
sin∠CAB

|
a
|
sin
π
4
=
|
b
|
sin
π
3
,
|
a
|
|
b
|
=
sin
π
4
sin
π
3
=
6
3
,
故答案為:
6
3
點評:本題考查了平面向量的基本運算問題,解題時應(yīng)用數(shù)形結(jié)合,利用正弦定理解答,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列5個命題:
①函數(shù)y=log2(sinx+cosx)的值域為(-∞,-
1
2
]
;
②函數(shù)f(x)=
3
sinx+cosx
的圖象可以由函數(shù)g(x)=2sinx的圖象向左平移
π
6
個單位得到;
③已知角α,β,γ構(gòu)成公差為
π
3
的等差數(shù)列,若cosβ=
1
3
,則cosα+cosγ=-
1
3
;
④函數(shù)h(x)=3x|log2x|-1的零點個數(shù)為1;
⑤若△ABC的三邊a,b,c滿足an+bn=cn(n≥3,n∈N*),則△ABC必為銳角三角形.
其中正確的命題個數(shù)是(  )
A、2B、3C、4D、5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,頂點M、N的距離為
5
,O為坐標(biāo)原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點.
(ⅰ)試判斷點O到直線AB的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)不等式組
x+y≤π
x-y≥0
y≥0
所表示的區(qū)域為M,函數(shù)y=sinx,x∈[0,π]的圖象與x軸所圍成的區(qū)域為N,向M內(nèi)隨機(jī)投一個點,則該點落在N內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|2x-1|-|x+2|≥3的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x2+x5=a0+a1(x-1)+a2(x-1)2+a3(x-1)3+a4(x-1)4+a5(x-1)5,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從0,1,2,3,4,5,6,7,8,9,這10個數(shù)字中同時取4個不同的數(shù),其和為偶數(shù),則不同的取法為
 
(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,若(m+i)2=3-4i,則實數(shù)m的值為(  )
A、-2
B、±2
C、±
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解二元一次方程組:
n-3r=0
2r
C
r
n
=60

查看答案和解析>>

同步練習(xí)冊答案