(2012•淄博一模)某程序框圖如圖所示,現(xiàn)輸入如下四個(gè)函數(shù):f(x)=x2,f(x)=
1
x
,f(x)=ex,f(x)=sinx,則可以輸出的函數(shù)是( 。
分析:由已知中的程序框圖可知符合第一個(gè)條件時(shí)函數(shù)為奇函數(shù),滿(mǎn)足第二個(gè)條件時(shí),函數(shù)存在零點(diǎn),同時(shí)滿(mǎn)足兩個(gè)條件才能輸出,分析已知中四個(gè)函數(shù)的性質(zhì),比照后可得答案.
解答:解:由已知中的程序框圖可知,輸出的函數(shù)必須同時(shí)滿(mǎn)足函數(shù)為奇函數(shù)且存在零點(diǎn)(即函數(shù)圖象與x軸有交點(diǎn))
∵函數(shù)f(x)=x2不是奇函數(shù),故不滿(mǎn)足要求;
函數(shù)f(x)=
1
x
不存在零點(diǎn)(即函數(shù)圖象與x軸沒(méi)有交點(diǎn)),故不滿(mǎn)足要求;
函數(shù)f(x)=ex不是奇函數(shù),故不滿(mǎn)足要求;
函數(shù)f(x)=sinx即是奇函數(shù)且存在零點(diǎn)(即函數(shù)圖象與x軸有交點(diǎn)),故滿(mǎn)足要求
故選D
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是選擇結(jié)構(gòu),函數(shù)的奇偶性,函數(shù)的零點(diǎn),是算法與函數(shù)的性質(zhì)的綜合應(yīng)用,正確理解程序功能是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)在△ABC中,已知b•cosC+c•cosB=3a•cosB,其中a、b、c分別為角A、B、C的對(duì)邊.則cosB值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)一個(gè)盒子中裝有4張卡片,每張卡片上寫(xiě)有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(I)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)已知函數(shù)f(x)=2cos2
x
2
-
3
sinx

(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)若a為第二象限角,且f(a-
π
3
)=
1
3
,求
cos2a
1+cos2a-sin2a
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)已知不等式x2-x≤0的解集為M,且集合N={x|-1<x<1},則M∩N為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淄博一模)設(shè)方程log4x-(
1
4
x=0、log 
1
4
x-(
1
4
x=0的根分別為x1、x2,則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案