15.若方程為$\frac{x^2}{m+1}-\frac{y^2}{m-3}$=1表示雙曲線,則實數(shù)m滿足( 。
A.m>3或m<-1B.m≠-1且m≠3C.-1<m<3D.m<-1

分析 利用雙曲線的簡單性質(zhì),列出不等式求解即可.

解答 解:方程為$\frac{x^2}{m+1}-\frac{y^2}{m-3}$=1表示雙曲線,
可得(m+1)(m-3)>0,解得m>3或m<-1.
故選:A.

點評 本題考查雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a,b,c分別是△ABC的三個內(nèi)角A,B,C所對的邊,若a=1,b=$\sqrt{3}$,A+C=2B,求:角A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.一塊邊長為6cm的正方形鐵皮按如圖(1)所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正三棱錐形容器,將該容器按如圖(2)放置,若其正視圖為等腰直角三角形(如圖(3)),則該容器的體積為( 。
A.$12\sqrt{6}c{m^3}$B.$4\sqrt{6}c{m^3}$C.$27\sqrt{2}c{m^3}$D.$9\sqrt{2}c{m^3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等差數(shù)列{an}中,若a3+a4+a5+a6+a7=25,則S9=45.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足an+1=-$\frac{1}{{{a_n}+2}}$,其中a1=0.
(1)求證$\left\{{\frac{1}{{{a_n}+1}}}\right\}$是等差數(shù)列,并求數(shù)列{an}的通項公式;
(2)設(shè)Tn=an+an+1+…+a2n-1.若Tn≤p-n對任意的n∈N*恒成立,求p的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)M={x|x=a2+1,a∈R},P={y|y=b2-4b+5,b∈R},則下列關(guān)系正確的是( 。
A.M=PB.M?P
C.P?MD.M與P沒有公共元素

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某廠預(yù)計從2016年初開始的前x個月內(nèi),市場對某種產(chǎn)品的需求總量f(x)(單位:臺)與月份x的近似關(guān)系為:f(x)=x(x+1)(35-2x),x∈N*且x≤12;
(1)寫出2016年第x個月的需求量g(x)與月份x的關(guān)系式;
(2)如果該廠此種產(chǎn)品每月生產(chǎn)a臺,為保證每月滿足市場需求,則a至少為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知命題:“若m>0,則方程x2+x-m=0有實數(shù)根”,分別寫出這個命題的逆命題,否命題,逆否命題,并分別判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點A(-5,0),B(5,0),直線AM,BM的交點為M,AM,BM的斜率之積為$-\frac{16}{25}$,則點M的軌跡方程是( 。
A.$\frac{x^2}{25}-\frac{y^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$
C.$\frac{x^2}{25}-\frac{y^2}{16}=1({x≠±5})$D.$\frac{x^2}{25}+\frac{y^2}{16}=1({x≠±5})$

查看答案和解析>>

同步練習(xí)冊答案