函數(shù)y=loga(3x-2)+1(a>0且a≠1)恒過定點(  )
A、(2,1)
B、(1,0)
C、(1,1)
D、(3,1)
考點:對數(shù)函數(shù)的單調(diào)性與特殊點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令對數(shù)的真數(shù)3x-2=1,求得y=1,可得函數(shù)y的圖象恒過定點的坐標.
解答: 解:令對數(shù)的真數(shù)3x-2=1,求得y=1,
可得函數(shù)y=loga(3x-2)+1(a>0且a≠1)恒過定點(1,1),
故選:C.
點評:本題主要考查對數(shù)函數(shù)的單調(diào)性和特殊點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若變量x,y滿足約束條件
3≤2x+y≤9
6≤x-y≤9
,則z=x+y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cosωx(x∈R,ω>0)的最小正周期為π,為了得到函數(shù)g(x)=sin(ωx+
π
4
)的圖象,只要將y=f(x)的圖象( 。
A、向左平移
π
8
個單位長度
B、向右平移
π
8
個單位長度
C、向左平移
π
4
個單位長度
D、向右平移
π
4
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若α=
π
4
,則tanα=1”的逆否命題是( 。
A、若α≠
π
4
,則tanα≠1
B、若tanα≠1,則α≠
π
4
C、若α=
π
4
,則tanα≠1
D、若tanα≠1,則α=
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A、B均為集合U={1,2,3,4}的子集,A∩B={1},A∪B={1,2,4},則A=( 。
A、{1}
B、{1,2}
C、{1,2,3}
D、{1,2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(1-x)3(1+x)8的展開式中,含x2項的系數(shù)是n,若(8-nx)n=a0+a1x+a2x2+…+anxn,則a0+a1+a2+…+an=( 。
A、0B、1
C、-1D、157

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2+2x-3<0},B={x|log2|x|<1},則A∩B等于(  )
A、(-3,0)∪(0,1)
B、(-2,0)∪(0,1)
C、(-1,0)∪(0,1)
D、(-2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:x+ay+1=0,直線l2:ax+y+2=0,則命題“若a=1或a=-1,則直線l1與l2平行”的否命題為(  )
A、若a≠1且a≠-1,則直線l1與l2不平行
B、若a≠1或a≠-1,則直線l1與l2不平行
C、若a=1或a=-1,則直線l1與l2不平行
D、若a≠1或a≠-1,則直線l1與l2平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是不相等的正數(shù),在a,b之間分別插入m個正數(shù)a1,a2,…,am和正數(shù)b1,b2,…,bm,使a,a1,a2,…,am,b是等差數(shù)列,a,b1,b2,…,bm,b是等比數(shù)列.
(1)若m=5,
a3
b3
=
5
4
,求
b
a
的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此時m的值;
(3)求證:an>bn(n∈N*,n≤m).

查看答案和解析>>

同步練習(xí)冊答案