某商品每件成本9元,售價(jià)為30元,每星期賣(mài)出144件. 如果降低價(jià)格,銷(xiāo)售量可以增加,且每星期多賣(mài)出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比.
已知商品單價(jià)降低2元時(shí),一星期多賣(mài)出8件.
(1)將一個(gè)星期的商品銷(xiāo)售利潤(rùn)表示成的函數(shù);
(2)如何定價(jià)才能使一個(gè)星期的商品銷(xiāo)售利潤(rùn)最大?

(1)(2)見(jiàn)解析

解析試題分析:(1)先設(shè)商品降價(jià)x元,寫(xiě)出多賣(mài)的商品數(shù),則可計(jì)算出商品在一個(gè)星期的獲利數(shù),再依題意:“商品單價(jià)降低2元時(shí),一星期多賣(mài)出24件”求出比例系數(shù)即可得一個(gè)星期的商品銷(xiāo)售利潤(rùn)表示成x的函數(shù);
(2)根據(jù)(1)中得到的函數(shù),利用導(dǎo)數(shù)研究其極值,從而救是f(x)達(dá)到極大值.從而得出所以定價(jià)為多少元時(shí),能使一個(gè)星期的商品銷(xiāo)售利潤(rùn)最大.
試題解析:解:(1)設(shè)商品降價(jià)元,則每個(gè)星期多賣(mài)的商品數(shù)為,若記商品在一個(gè)星期的獲利為,則依題意有,   3分
又由已知條件,,于是有,                      5分
所以             6分
(2)由(1)得          7分
當(dāng)變化時(shí),的變化如下表:



2

12



 

 



極小

極大

   10分
時(shí),達(dá)到極大值.因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/8/iqrwe4.png" style="vertical-align:middle;" />,
所以定價(jià)為元能使一個(gè)星期的商品銷(xiāo)售利潤(rùn)最大.      13分
考點(diǎn):函數(shù)模型的選擇與應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=ax2-2ax+2+b(a≠0),若f(x)在區(qū)間[2,3]上有最大值5,最小值2.
(1)求a,b的值;
(2)若b<1,g(x)=f(x)-mx在[2,4]上單調(diào),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某小區(qū)有一邊長(zhǎng)為2(單位:百米)的正方形地塊OABC,其中OAE是一個(gè)游泳池,計(jì)劃在地塊OABC內(nèi)修一條與池邊AE相切的直路(寬度不計(jì)),切點(diǎn)為M,并把該地塊分為兩部分.現(xiàn)以點(diǎn)O為坐標(biāo)原點(diǎn),以線段OC所在直線為x軸,建立平面直角坐標(biāo)系,若池邊AE滿(mǎn)足函數(shù))的圖象,且點(diǎn)M到邊OA距離為
(1)當(dāng)時(shí),求直路所在的直線方程;
(2)當(dāng)t為何值時(shí),地塊OABC在直路不含泳池那側(cè)的面積取到最大,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí).研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度的一次函數(shù).
(1)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(2)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了保護(hù)環(huán)境,某工廠在國(guó)家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測(cè)算,處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬(wàn)元的某種產(chǎn)品,同時(shí)獲得國(guó)家補(bǔ)貼萬(wàn)元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤(rùn);
如果不能獲利,請(qǐng)求出國(guó)家最少補(bǔ)貼多少萬(wàn)元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少?lài)崟r(shí),每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,為了制作一個(gè)圓柱形燈籠,先要制作4個(gè)全等的矩形骨架,總計(jì)耗用9.6米鐵絲,再用S平方米塑料片制成圓柱的側(cè)面和下底面(不安裝上底面).當(dāng)圓柱底面半徑r取何值時(shí),S取得最大值?并求出該最大值(結(jié)果精確到0.01平方米).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開(kāi)花,這些古蓮子是多少年以前的遺物呢?要測(cè)定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過(guò)5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過(guò)科學(xué)家測(cè)定知道,若14C的原始含量為a,則經(jīng)過(guò)t年后的殘余量a′(與a之間滿(mǎn)足a′=a·e-kt).現(xiàn)測(cè)得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某商場(chǎng)銷(xiāo)售某種商品的經(jīng)驗(yàn)表明,該商品每日的銷(xiāo)售量y(單
位:千克)與銷(xiāo)售價(jià)格x(單位:元/千克)滿(mǎn)足關(guān)系式y+10(x-6)2,其中3<x<6,a為常數(shù).已知銷(xiāo)售價(jià)格為5元/千克時(shí),每日可售出該商品11千克.
①求a的值;
②若該商品的成本為3元/千克,試確定銷(xiāo)售價(jià)格x的值,使商場(chǎng)每日銷(xiāo)售該商品所獲得的利潤(rùn)最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案