12.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

分析 由已知中的三視圖可得,該幾何體是以俯視圖為底面的三棱錐,進(jìn)而可得幾何體的表面積.

解答 解:由已知中的三視圖可得,該幾何體是以俯視圖為底面的三棱錐,
底面面積S=$\frac{1}{2}$×2×1=1,
高為h=$\sqrt{3}$,
故體積V=$\frac{1}{3}Sh$=$\frac{\sqrt{3}}{3}$,
故選:A.

點(diǎn)評 本題考查的知識點(diǎn)是由三視圖求體積和表面積,根據(jù)已知中的三視圖判斷幾何體的形狀,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若log2a+log2b=0(a>0,b>0,a≠1,b≠1),則函數(shù)f(x)=ax與g(x)=-logbx的圖象關(guān)于( 。
A.直線y=x對稱B.x軸對稱C.y軸對稱D.原點(diǎn)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)直線l的方程為2x+(k-3)y-2k+6=0(k≠3),若直線l在x軸、y軸上截距之和為0,則k的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a1=1,an-2an-1=2n,則{an}的通項(xiàng)公式為(2n-1)×2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|2x+1|,g(x)=|3x-a|(a∈R).
(Ⅰ)當(dāng)a=2時(shí),解不等式:f(x)+g(x)>x+6;
(Ⅱ)若關(guān)于x的不等式3f(x)+2g(x)≥6在R上恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若一個圓錐的母線長為4,高為2,則過這個圓錐的任意兩條母線的截面面積的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓的中心在坐標(biāo)原點(diǎn)O,長軸長為$2\sqrt{2}$,離心率$e=\frac{{\sqrt{2}}}{2}$,過右焦點(diǎn)F的直線l交橢圓于P,Q兩點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)直線l的斜率為1時(shí),求弦長|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.過雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)左焦點(diǎn)F的弦AB⊥x軸,E為雙曲線的右頂點(diǎn),若△ABE為直角三角形,則雙曲線的離心率為(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線y2=2px(p>0)上點(diǎn)(2,a)到焦點(diǎn)F的距離為3,
(1)求拋物線C的方程;
(2)已知點(diǎn)M為拋物線的準(zhǔn)線與x軸的交點(diǎn),且直線l:x-y-2=0與拋物線C相交于A,B兩點(diǎn),求三角形ABM的面積.

查看答案和解析>>

同步練習(xí)冊答案