2.已知函數(shù)f(x)=(2-a)lnx+2ax+$\frac{1}{x}$,(a∈R),函數(shù)h(x)=px-$\frac{p+2e-1}{x}$(其中e=2.718…).
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)在x=1處的切線(xiàn)的傾斜角為$\frac{π}{4}$,在區(qū)間[1,e]至少存在一個(gè)x0,使得h(x0)>f(x0)成立,求實(shí)數(shù)p的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)由題意構(gòu)建新函數(shù)F(x),這樣問(wèn)題轉(zhuǎn)化為使函數(shù)F(x)在[1,e]上至少有一解的判斷.

解答 解:(1)f(x)的定義域是(0,+∞),
f′(x)=$\frac{(2x-1)(ax+1)}{{x}^{2}}$,
①a≥0時(shí),ax+1>0,
令f′(x)>0,解得:x>$\frac{1}{2}$,令f′(x)<0,解得:0<x<$\frac{1}{2}$,
∴f(x)在(0,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,+∞)遞增,
②-2<a<0時(shí),-$\frac{1}{a}$>$\frac{1}{2}$,
令f′(x)>0,解得:x>-$\frac{1}{a}$或x<$\frac{1}{2}$,令f′(x)<0,解得:$\frac{1}{2}$<x<-$\frac{1}{a}$,
∴f(x)在(0,$\frac{1}{2}$)遞增,在($\frac{1}{2}$,-$\frac{1}{a}$)遞減,在(-$\frac{1}{a}$,+∞)遞增,
③a=-2時(shí),f′(x)≤0,f(x)在(0,+∞)遞減;
④a<-2時(shí),-$\frac{1}{a}$<$\frac{1}{2}$,
令f′(x)>0,解得:x<-$\frac{1}{a}$或x>$\frac{1}{2}$,令f′(x)<0,解得:$\frac{1}{2}$>x>-$\frac{1}{a}$,
∴f(x)在(0,-$\frac{1}{a}$)遞增,在(-$\frac{1}{a}$,$\frac{1}{2}$)遞減,在($\frac{1}{2}$,+∞)遞增.
(2)由(1)f′(1)=a+1=tan$\frac{π}{4}$=1,解得:a=0,
∴f(x)=2lnx+$\frac{1}{x}$,
令F(x)=h(x)-f(x)=px-$\frac{p}{x}$-$\frac{2e}{x}$-2lnx,
①當(dāng)p≤0時(shí),由x∈[1,e]得px-$\frac{p}{x}$≤0,-$\frac{2e}{x}$-2lnx<0.
所以,在[1,e]上不存在x0,使得h(x0)>f(x0)成立;
②當(dāng)p>0時(shí),F(xiàn)'(x)=$\frac{{px}^{2}-2x+p+2e}{{x}^{2}}$,∵x∈[1,e],
∴2e-2x≥0,px2+p>0,F(xiàn)'(x)>0在[1,e]上恒成立,故F(x)在[1,e]上單調(diào)遞增.
∴F(x)max=F(e)=pe-$\frac{p}{e}$-4.
故只要pe-$\frac{p}{e}$-4>0,解得p>$\frac{4e}{{e}^{2}-1}$,
∴p的取值范圍是($\frac{4e}{{e}^{2}-1}$,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及分類(lèi)討論思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=|x+a|+|x-2|,f(x)≤|x-4|的解集為A,若[1,2]⊆A,則實(shí)數(shù)a的取值范圍為[-3,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,在三棱錐P-ABC中,△PAB和△CAB都是以AB為斜邊的等腰直角三角形.
(1)證明:AB⊥PC;
(2)若AB=2PC=$\sqrt{2}$,求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在路旁某處,有電線(xiàn)桿15根,某人沿路的一方每次運(yùn)一根放到路邊,然后沿原路返回,再運(yùn)第2根、第3根,…,直到全部運(yùn)完返回原地,如果他第一根是運(yùn)放到距原處50米處,以后的每一根比前一根要多運(yùn)40米,此人共走路多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知集合A={x||x-a|<4},B={x|x2-4x-5>0}
(1)若A∪B=R,求實(shí)數(shù)a的取值范圍.
(2)縣否存在實(shí)數(shù)a,使得A∩B=∅?若存在,則求a的取值范圍,否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:PD∥平面EAC;
(2)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,已知AB為圓O的直徑,點(diǎn)D為線(xiàn)段AB上一點(diǎn),且AD=$\frac{1}{3}$DB,點(diǎn)C為圓O上一點(diǎn),且BC=$\sqrt{3}$AC.點(diǎn)P在圓O所在平面上的正投影為點(diǎn)D,PD=DB.
(1)再BC上找一點(diǎn)E,使BC⊥平面PDE,并求出$\frac{CE}{BE}$的值;
(2)求平面PAC與平面PBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.直角梯形的一條對(duì)角線(xiàn)把梯形分成兩個(gè)三角形,其中一個(gè)是邊長(zhǎng)為30的等邊三角形,則這個(gè)梯形的中位線(xiàn)長(zhǎng)是( 。
A.15B.22.5C.45D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=x2-2|x|+3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)若方程f(x)=k有四個(gè)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案