分析 (1)根據(jù)向量的數(shù)量積公式和向量的模計算即可,
(2)根據(jù)向量的平行和向量的模得到關于x,y的方程組,解得即可.
解答 解:(1)易知$|\overrightarrow a|=\sqrt{3}$,$|2\overrightarrow a+\overrightarrow b{|^2}=4{\overrightarrow a^2}+4\overrightarrow a•\overrightarrow b+{\overrightarrow b^2}$
=$4×3+4×\sqrt{3}×4×cos{150°}+16$=12-24+16=4,
所以|2$\overrightarrow{a}+\overrightarrow$|=2,
|$\overrightarrow{a}-2\overrightarrow$|2=${\overrightarrow{a}}^{2}-4\overrightarrow{a}•\overrightarrow+4{\overrightarrow}^{2}$=3-4×4×$\sqrt{3}$×cos150°+4×16=91,
所以|$\overrightarrow{a}-2\overrightarrow$|=$\sqrt{91}$
(2)由題意得:$\sqrt{2}x-y=0$,且x2+y2=16,
解得:$\left\{\begin{array}{l}{x=\frac{4\sqrt{3}}{3}}\\{y=\frac{4\sqrt{6}}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=-\frac{4\sqrt{3}}{3}}\\{y=-\frac{4\sqrt{6}}{3}}\end{array}\right.$
所以$\overrightarrow b=(\frac{{4\sqrt{3}}}{3},\frac{{4\sqrt{6}}}{3})$或$\overrightarrow b=(-\frac{{4\sqrt{3}}}{3},-\frac{{4\sqrt{6}}}{3})$
點評 本題考查了向量的數(shù)量積的運算和向量模的計算,以及向量平行,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{{e}^{2}}{4}$,+∞) | B. | [$\frac{{e}^{2}}{8}$,+∞) | C. | (0,$\frac{{e}^{2}}{4}$] | D. | (0,$\frac{{e}^{2}}{8}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com