14.已知(2x-3)4=${a}_{0}{+a}_{1}x{+a}_{2}{x}^{2}{+a}_{3}{x}^{3}{+a}_{4}{x}^{4}$,求
(Ⅰ)a1+a2+a3+a4
(Ⅱ)${(a}_{0}{{+a}_{2}+a}_{4})^2-{(a}_{1}{+a}_{3})^{2}$.
(Ⅲ)|a1|+|a2|+|a3|+|a4|

分析 (Ⅰ)在已知二項(xiàng)式中分別取x=0、x=1聯(lián)立求得a1+a2+a3+a4;
(Ⅱ)展開平方差公式,在已知二項(xiàng)式中分別取x=-1、x=1聯(lián)立求${(a}_{0}{{+a}_{2}+a}_{4})^2-{(a}_{1}{+a}_{3})^{2}$;
(Ⅲ)結(jié)合(Ⅰ)、(Ⅱ)求得|a1|+|a2|+|a3|+|a4|.

解答 解:(Ⅰ)在(2x-3)4=${a}_{0}{+a}_{1}x{+a}_{2}{x}^{2}{+a}_{3}{x}^{3}{+a}_{4}{x}^{4}$中,
取x=0,得a0=81,取x=1,得a0+a1+a2+a3+a4=1,
∴a1+a2+a3+a4 =-80;
(Ⅱ)在(2x-3)4=${a}_{0}{+a}_{1}x{+a}_{2}{x}^{2}{+a}_{3}{x}^{3}{+a}_{4}{x}^{4}$中,
取x=1,得a0+a1+a2+a3+a4=1,
取x=-1,得a0-a1+a2-a3+a4=625,
∴${(a}_{0}{{+a}_{2}+a}_{4})^2-{(a}_{1}{+a}_{3})^{2}$ 
=(a0+a1+a2+a3+a4)(a0-a1+a2-a3+a4)=625;
(Ⅲ)由二項(xiàng)式可知,|a1|+|a2|+|a3|+|a4|=-a1+a2-a3+a4,
由(Ⅰ)知,a0=81,由(Ⅱ)知,a0-a1+a2-a3+a4=625,
∴|a1|+|a2|+|a3|+|a4|=-a1+a2-a3+a4=625-81=544.

點(diǎn)評(píng) 本題考查二項(xiàng)式系數(shù)的性質(zhì),考查了特值法的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.對(duì)如圖中的A、B、C、D四個(gè)區(qū)域染色,每塊區(qū)域染一種顏色,有公共邊的區(qū)域不同色,現(xiàn)有紅、黃、藍(lán)三種不同顏色可以選擇,則不同的染色方法共有( 。
A.12種B.18種C.20種D.22種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.化簡:$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=(  )
A.sin2αB.cos2αC.tan2αD.cot2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)a,b∈R,a2+b2=3,則3a-b的最大值為( 。
A.30B.-30C.$\sqrt{30}$D.-$\sqrt{30}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足:an=2an-1+2n+2(n∈N*,n≥2),a1=2,數(shù)列{bn}滿足bn=$\frac{{a}_{n}+2}{{2}^{n}}$(n∈N*).
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)若數(shù)列{an}的前n項(xiàng)和為Sn,求Sn;
(3)己知數(shù)列{cn}滿足cn=$\frac{1}{_{n}_{n+1}}$,且數(shù)列{cn}的前n項(xiàng)和為Tn,若不等式8Tn≤λbn+1對(duì)任意的n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.x+$\frac{2}{x-1}$>-2的解集是(  )
A.(-1,1)B.(-1,0)∪(1,+∞)C.(0,1)D.(-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列圓的方程.
(1)圓心是(4,-1),且過點(diǎn)(5,2);
(2)圓心在y軸上,半徑為5,且過點(diǎn)(3,-4);
(3)過點(diǎn)P(2,-1)和直線x-y=1相切,并且圓心在直線y=-2x上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知p是q的充要條件,s是t的充分條件,q是t的必要條件,s是q的必要條件,問:s是p的什么條件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B在拋物線上,O為坐標(biāo)原點(diǎn).若$\overrightarrow{AF}$+2$\overrightarrow{BF}$=0,則△OAB的面積為(  )
A.$\frac{{3\sqrt{2}}}{8}$B.$\frac{{3\sqrt{2}}}{4}$C.$\frac{{3\sqrt{2}}}{2}$D.3$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案