cos(α+
π
3
)=-
4
5
,則sin(α-
π
6
)
=
 
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:由題意可得sin(α-
π
6
)
=sin[(α+
π
3
)-
π
2
]=sin(α+
π
3
)cos
π
2
-cos(α+
π
3
)sin
π
2
,代值計(jì)算可得.
解答: 解:∵cos(α+
π
3
)=-
4
5

sin(α-
π
6
)
=sin[(α+
π
3
)-
π
2
]
=sin(α+
π
3
)cos
π
2
-cos(α+
π
3
)sin
π
2

=cos(α+
π
3
)=
4
5

故答案為:
4
5
點(diǎn)評(píng):本題考查兩角和與差的三角函數(shù)公式,整體代換是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
x-y+1≥0
x+y-4≤0
,若z=x+2y,則z的最大值為( 。
A、-1
B、4
C、
13
2
D、
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a>1”是“l(fā)na>0”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,其中a=4,c=2
2
,cos(B+C)=
2
4

(1)求sinC的值;
(2)求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a2+b2-ab=c2,S△ABC=2
3
,c=2
3
,則△ABC為
 
三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有3所重點(diǎn)高校A,B,C可以提供自主招生機(jī)會(huì),但由于時(shí)間等其他客觀原因,每位同學(xué)只能申請(qǐng)其中一所學(xué)校,且申請(qǐng)其中任一所學(xué)校是等可能的.現(xiàn)某班有4位同學(xué)提出申請(qǐng),求:
(1)恰有2人申請(qǐng)A高校的概率;
(2)4人申請(qǐng)的學(xué)校個(gè)數(shù)ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三所學(xué)校的6名學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),其中有1名甲學(xué)校的學(xué)生,2名乙學(xué)校的學(xué)生,3名丙學(xué)校的學(xué)生,培訓(xùn)結(jié)束后要照相留念,要求同一學(xué)校的學(xué)生互不相鄰,則不同的排法種數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x)=aex-x,若存在實(shí)數(shù)m、n,使得f(x)≤0的解集為[m,n](m<n),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,0)∪(0,
1
e
B、(-∞,0)∪(0,
1
e
]
C、(0,
1
e
D、(0,
1
e
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+y=0被圓(x+1)2+(y+1)2=r2(r>0)所截得弦長(zhǎng)|AB|=2,則r的值是(  )
A、
2
B、2
C、4
D、
3

查看答案和解析>>

同步練習(xí)冊(cè)答案