分析 (1)根據(jù)等差數(shù)列的性質(zhì)列方程解出a2,再根據(jù)等比數(shù)列的性質(zhì)列方程求出公差,從而得出數(shù)列{an},{bn}的通項(xiàng)公式
(2)分別求出{$\frac{1}{{{a}_{n}}^{2}-1}$}和{bn}的前n項(xiàng)和,即可得出Sn.
解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,
∵a1+a2+a3=3a2=15,∴a2=5,
∴{bn}中的b1,b2,b3依次為7-d,10,18+d,∴(7-d)(18+d)=100,
解得d=2或d=-13(舍去),
∴a1=3,∴an=2n+1,
∵b1=5,b2=10,∴q=2.
∴${b_n}={b_1}•{q^{n-1}}=5•{2^{n-1}}$.
(2)$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}$($\frac{1}{n}-\frac{1}{n+1}$),
∴Sn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)+$\frac{5(1-{2}^{n})}{1-2}$=$\frac{1}{4}•$$\frac{n}{n+1}$+5(2n-1).
點(diǎn)評 本題考查了等差數(shù)列、等比數(shù)列的性質(zhì),數(shù)列求和,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 7 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[\frac{2}{3},\frac{11}{9}]$ | B. | $[\frac{5}{6},\frac{11}{9}]$ | C. | $[\frac{2}{3},\frac{3}{4}]$ | D. | $[\frac{2}{3},\frac{5}{6}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (-1,0] | C. | (-∞,1) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若n⊥α,n⊥β,m?β則m∥α | B. | 若m⊥α,α⊥β,則m∥β | ||
C. | 若m,n在γ內(nèi)的射影互相平行,則m∥n | D. | 若m⊥l,α∩β=l,則m⊥α |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com