【題目】已知曲線C1 (α為參數(shù))與曲線C2:ρ=4sinθ
(1)寫出曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)求曲線C1和C2公共弦的長度.

【答案】
(1)解:曲線C1的普通方程圍為(x﹣1)2+y2=4,

曲線C2的直角坐標(biāo)方程x2+y2﹣4y=0


(2)解:曲線C1和C2公共弦所在額直線為2x﹣4y+3=0,

且點(diǎn)C1(1,0)到直線2x﹣4y+3=0的距離為 = ,

所以公共弦的長度為2 =


【解析】(1)利用sin2θ+cos2θ=1消參數(shù)得到C1的普通方程,對ρ=4sinθ兩邊同乘以ρ即可得到曲線C2的普通方程;(2)曲線C1和C2公共弦所在額直線為2x﹣4y+3=0,求出圓心距,即可求出公共弦長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓軸交于兩點(diǎn),點(diǎn)為圓上異于的任意一點(diǎn),圓在點(diǎn)處的切線與圓在點(diǎn)處的切線分別交于,直線交于點(diǎn),設(shè)點(diǎn)的軌跡為曲線.

(1)求曲線的方程;

(2)曲線軸正半軸交點(diǎn)為,則曲線是否存在直角頂點(diǎn)為的內(nèi)接等腰直角三角形,若存在,求出所有滿足條件的的兩條直角邊所在直線的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+ax+b(a≠0,b≠0).
(1)若函數(shù)f(x)的圖象在點(diǎn)(0,f(0))處的切線方程為y=2,求f(x)在區(qū)間[﹣2,1]上的最值;
(2)若a=﹣b,試討論函數(shù)f(x)在區(qū)間(1,+∞)上零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin2x﹣ ,g(x)= sin2x.
(1)求函數(shù)f(x)與g(x)圖象交點(diǎn)的橫坐標(biāo);
(2)若函數(shù)φ(x)= ﹣f(x)﹣g(x),將函數(shù)φ(x)圖象上的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)擴(kuò)大為原來的4倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)h(x),求h(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某校的800名男生中隨機(jī)抽取50名測量身高,被測學(xué)生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組,第一組[155,160),第二組[160,165),…,第八組[190.195],如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組人數(shù)為4.

(1)求第七組的頻數(shù).
(2)估計(jì)該校的800名男生身高的中位數(shù)在上述八組中的哪一組以及身高在180cm以上(含180cm)的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱臺中, 分別是棱長為1與2的正三角形,平面平面,四邊形為直角梯形, , 中點(diǎn), , ).

(1)設(shè)中點(diǎn)為, ,求證: 平面;

(2)若到平面的距離為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB為鈍角,AC=BC=1, 且x+y=1,函數(shù) 的最小值為 ,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖①,一條寬為1km的兩平行河岸有村莊A和供電站C,村莊BA、C的直線距離都是2km,BC與河岸垂直,垂足為D.現(xiàn)要修建電纜,從供電站C向村莊AB供電.修建地下電纜、水下電纜的費(fèi)用分別是2萬元/km、4萬元/km

(1)已知村莊AB原來鋪設(shè)有舊電纜,但舊電纜需要改造,改造費(fèi)用是0.5萬元/km.現(xiàn)決定利用此段舊電纜修建供電線路,并要求水下電纜長度最短,試求該方案總施工費(fèi)用的最小值;

(2)如圖②,點(diǎn)E在線段AD上,且鋪設(shè)電纜的線路為CEEA、EB.若∠DCEθ(0≤θ),試用θ表示出總施工費(fèi)用y (萬元)的解析式,并求y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點(diǎn)在平面上的射影為,有,且.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案