分析 (1)求出導(dǎo)函數(shù)利用f′(2)=0,得a;在x=2處取得極小值-$\frac{4}{3}$,得b.然后求出f(x)的解析式即可;
(2)求出函數(shù)的最值,要使f(x)≤m2+m+$\frac{10}{3}$在[-4,3]上恒成立,只需m2+m+$\frac{10}{3}$≥$\frac{28}{3}$,求解即可.
解答 解:(1)f′(x)=x2+a,由f′(2)=0,得a=-4;
再由f(2)=-$\frac{4}{3}$,得b=4,
所以f(x)=$\frac{1}{3}$x3-4x+4;
(2)因?yàn)閒(-4)=-$\frac{4}{3}$,f(-2)=$\frac{28}{3}$,f(2)=-$\frac{4}{3}$,
f(3)=1,所以函數(shù)f(x)在[-4,3]上的最大值為$\frac{28}{3}$,
要使f(x)≤m2+m+$\frac{10}{3}$在[-4,3]上恒成立,
只需m2+m+$\frac{10}{3}$≥$\frac{28}{3}$,解得m≥2或m≤-3.
所以實(shí)數(shù)m的取值范圍是(-∞,-3]∪[2,+∞).
點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù)的應(yīng)用,函數(shù)的最值以及函數(shù)的單調(diào)性的求解,考查分析問題解決問題的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 12 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com