3.如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是$\widehat{DF}$的中點(diǎn).
(Ⅰ)設(shè)P是$\widehat{CE}$上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(Ⅱ)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.

分析 (Ⅰ)由已知利用線面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,結(jié)合∠EBC=120°求得∠CBP=30°;
(Ⅱ)法一、取$\widehat{EC}$的中點(diǎn)H,連接EH,GH,CH,可得四邊形BEGH為菱形,取AG中點(diǎn)M,連接EM,CM,EC,得到EM⊥AG,CM⊥AG,說明∠EMC為所求二面角的平面角.求解三角形得二面角E-AG-C的大小.
法二、以B為坐標(biāo)原點(diǎn),分別以BE,BP,BA所在直線為x,y,z軸建立空間直角坐標(biāo)系.求出A,E,G,C的坐標(biāo),進(jìn)一步求出平面AEG與平面ACG的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角E-AG-C的大。

解答 解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP?平面ABP,AB∩AP=A,
∴BE⊥平面ABP,又BP?平面ABP,
∴BE⊥BP,又∠EBC=120°,
因此∠CBP=30°;
(Ⅱ)解法一、
取$\widehat{EC}$的中點(diǎn)H,連接EH,GH,CH,
∵∠EBC=120°,∴四邊形BECH為菱形,
∴AE=GE=AC=GC=$\sqrt{{3}^{2}+{2}^{2}}=\sqrt{13}$.
取AG中點(diǎn)M,連接EM,CM,EC,
則EM⊥AG,CM⊥AG,
∴∠EMC為所求二面角的平面角.
又AM=1,∴EM=CM=$\sqrt{13-1}=2\sqrt{3}$.
在△BEC中,由于∠EBC=120°,
由余弦定理得:EC2=22+22-2×2×2×cos120°=12,
∴$EC=2\sqrt{3}$,因此△EMC為等邊三角形,
故所求的角為60°.
解法二、以B為坐標(biāo)原點(diǎn),分別以BE,BP,BA所在直線為x,y,z軸建立空間直角坐標(biāo)系.
由題意得:A(0,0,3),E(2,0,0),G(1,$\sqrt{3}$,3),C(-1,$\sqrt{3}$,0),
故$\overrightarrow{AE}=(2,0,-3)$,$\overrightarrow{AG}=(1,\sqrt{3},0)$,$\overrightarrow{CG}=(2,0,3)$.
設(shè)$\overrightarrow{m}=({x}_{1},{y}_{1},{z}_{1})$為平面AEG的一個(gè)法向量,
由$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AE}=0}\\{\overrightarrow{m}•\overrightarrow{AG}=0}\end{array}\right.$,得$\left\{\begin{array}{l}{2{x}_{1}-3{z}_{1}=0}\\{{x}_{1}+\sqrt{3}{y}_{1}=0}\end{array}\right.$,取z1=2,得$\overrightarrow{m}=(3,-\sqrt{3},2)$;
設(shè)$\overrightarrow{n}=({x}_{2},{y}_{2},{z}_{2})$為平面ACG的一個(gè)法向量,
由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AG}=0}\\{\overrightarrow{n}•\overrightarrow{CG}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{{x}_{2}+\sqrt{3}{y}_{2}=0}\\{2{x}_{2}+3{z}_{2}=0}\end{array}\right.$,取z2=-2,得$\overrightarrow{n}=(3,-\sqrt{3},-2)$.
∴cos<$\overrightarrow{m},\overrightarrow{n}$>=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}=\frac{1}{2}$.
∴二面角E-AG-C的大小為60°.

點(diǎn)評(píng) 本題考查空間角的求法,考查空間想象能力和思維能力,訓(xùn)練了線面角的求法及利用空間向量求二面角的大小,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.函數(shù)f(x)=sin2x+$\sqrt{3}$cosx-$\frac{3}{4}$(x∈[0,$\frac{π}{2}$])的最大值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當(dāng)n∈N*時(shí),
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1-xn≤$\frac{{x}_{n}{x}_{n+1}}{2}$;
(Ⅲ)$\frac{1}{{2}^{n-1}}$≤xn≤$\frac{1}{{2}^{n-2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知命題p:?x>0,ln(x+1)>0;命題q:若a>b,則a2>b2,下列命題為真命題的是( 。
A.p∧qB.p∧¬qC.¬p∧qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知當(dāng)x∈[0,1]時(shí),函數(shù)y=(mx-1)2 的圖象與y=$\sqrt{x}$+m的圖象有且只有一個(gè)交點(diǎn),則正實(shí)數(shù)m的取值范圍是( 。
A.(0,1]∪[2$\sqrt{3}$,+∞)B.(0,1]∪[3,+∞)C.(0,$\sqrt{2}$)∪[2$\sqrt{3}$,+∞)D.(0,$\sqrt{2}$]∪[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(1)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM|•|OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)A的極坐標(biāo)為(2,$\frac{π}{3}$),點(diǎn)B在曲線C2上,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)函數(shù)f(x)=2sin(ωx+φ),x∈R,其中ω>0,|φ|<π.若f($\frac{5π}{8}$)=2,f($\frac{11π}{8}$)=0,且f(x)的最小正周期大于2π,則(  )
A.ω=$\frac{2}{3}$,φ=$\frac{π}{12}$B.ω=$\frac{2}{3}$,φ=-$\frac{11π}{12}$C.ω=$\frac{1}{3}$,φ=-$\frac{11π}{24}$D.ω=$\frac{1}{3}$,φ=$\frac{7π}{24}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,若輸入N的值為19,則輸出N的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{1≤x+y≤2}\\{-1≤x-y≤1}\end{array}\right.$,則z=$\frac{y+1}{x+1}$的最大值是2.

查看答案和解析>>

同步練習(xí)冊(cè)答案