已知函數(shù)在[0,+∞)上是減函數(shù),試比較的大。

解析試題分析:由于函數(shù)上的減函數(shù),利用減函數(shù)的定義,要比較的大小,必須先比較的大。
試題解析:解 ∵
又∵上是減函數(shù),

考點:函數(shù)的單調性.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

定義在上的函數(shù)時,,且對任意的。
(1)求證:,
(2)求證:對任意的,恒有
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為實常數(shù)).
(1)當時,證明:
不是奇函數(shù);②上的單調遞減函數(shù).
(2)設是奇函數(shù),求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知偶函數(shù)滿足:當時,,當時,.
(Ⅰ).求表達式;
(Ⅱ).若直線與函數(shù)的圖像恰有兩個公共點,求實數(shù)的取值范圍;
(Ⅲ).試討論當實數(shù)滿足什么條件時,直線的圖像恰有個公共點,且這個公共點均勻分布在直線上.(不要求過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)).
(1)討論的奇偶性;
(2)當時,求的單調區(qū)間;
(3)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當時,證明:函數(shù)不是奇函數(shù);
(2)設函數(shù)是奇函數(shù),求的值;
(3)在(2)條件下,判斷并證明函數(shù)的單調性,并求不等式的解集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知m為常數(shù),函數(shù)為奇函數(shù).
(1)求m的值;
(2)若,試判斷的單調性(不需證明);
(3)若,存在,使,求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

是定義在上的減函數(shù),滿足.
(1)求證:
(2)若,解不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù).
(1)判斷函數(shù)的奇偶性;
(2)若當時,恒成立,求實數(shù)的最大值.

查看答案和解析>>

同步練習冊答案