【題目】某土特產(chǎn)超市為預(yù)估2020年元旦期間游客購(gòu)買土特產(chǎn)的情況,對(duì)2019年元旦期間的90位游客購(gòu)買情況進(jìn)行統(tǒng)計(jì),得到如下人數(shù)分布表.

(1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).

(2)為吸引游客,該超市推出一種優(yōu)惠方案,購(gòu)買金額不少于60元可抽獎(jiǎng)3次,每次中獎(jiǎng)概率為p(每次抽獎(jiǎng)互不影響,且p的值等于人數(shù)分布表中購(gòu)買金額不少于60元的頻率),中獎(jiǎng)1次減5元,中獎(jiǎng)2次減10元,中獎(jiǎng)3次減15.若游客甲計(jì)劃購(gòu)買80元的土特產(chǎn),請(qǐng)列出實(shí)際付款數(shù)X()的分布列并求其數(shù)學(xué)期望.

:參考公式和數(shù)據(jù):,.

附表:

【答案】(1)的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān);(2)分布列見(jiàn)解析,

【解析】

(1) 由游客購(gòu)買情況統(tǒng)計(jì)人數(shù)分布表數(shù)據(jù)直接填入列聯(lián)表,并代入公式,計(jì)算出的值,與獨(dú)立性檢驗(yàn)判斷表比較作出判斷.

(2). 先計(jì)算每次中獎(jiǎng)概率和變量的可能種數(shù),判斷隨機(jī)變量X服從二項(xiàng)分布,用二項(xiàng)分布概率公式計(jì)算,再利用分布列求期望.

(1)列聯(lián)表如下:

不少于60

少于60

合計(jì)

12

40

52

18

20

38

合計(jì)

30

60

90

因此有的把握認(rèn)為購(gòu)買金額是否少于60元與性別有關(guān).

(2)X的可能取值為6570,75,80,且.

,

X

65

70

75

80

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,四邊形是菱形,點(diǎn)在線段.

1)證明:平面平面

2)若,二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)拋物線y2=4x的焦點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),設(shè)點(diǎn)M3,0.若△MAB的面積為,則|AB|=( )

A.2B.4C.D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C1a0,b0)的焦點(diǎn)分別為F1(﹣50),F250),PC上一點(diǎn),PF1PF2,tanPF1F2,則C的方程為(

A.x21B.y21

C.1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知定點(diǎn)F1,0),點(diǎn)Ax軸的非正半軸上運(yùn)動(dòng),點(diǎn)By軸上運(yùn)動(dòng),滿足0,A關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為M,設(shè)點(diǎn)M的軌跡為曲線C.

1)求C的方程;

2)已知點(diǎn)G3,﹣2),動(dòng)直線xtt3)與C相交于PQ兩點(diǎn),求過(guò)GP,Q三點(diǎn)的圓在直線y=﹣2上截得的弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】東莞的輕軌給市民出行帶來(lái)了很大的方便,越來(lái)越多的市民選擇乘坐輕軌出行,很多市民都會(huì)開(kāi)汽車到離家最近的輕軌站,將車停放在輕軌站停車場(chǎng),然后進(jìn)站乘輕軌出行,這給輕軌站停車場(chǎng)帶來(lái)很大的壓力.某輕軌站停車場(chǎng)為了解決這個(gè)問(wèn)題,決定對(duì)機(jī)動(dòng)車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時(shí)內(nèi)(4小時(shí))每輛每次收費(fèi)5元;超過(guò)4小時(shí)不超過(guò)6小時(shí),每增加一小時(shí)收費(fèi)增加3元;超過(guò)6小時(shí)不超過(guò)8小時(shí),每增加一小時(shí)收費(fèi)增加4元,超過(guò)8小時(shí)至24小時(shí)內(nèi)(24小時(shí))收費(fèi)30元;超過(guò)24小時(shí),按前述標(biāo)準(zhǔn)重新計(jì)費(fèi).上述標(biāo)準(zhǔn)不足一小時(shí)的按一小時(shí)計(jì)費(fèi).為了調(diào)查該停車場(chǎng)一天的收費(fèi)情況,現(xiàn)統(tǒng)計(jì)1000輛車的停留時(shí)間(假設(shè)每輛車一天內(nèi)在該停車場(chǎng)僅停車一次),得到下面的頻數(shù)分布表:

以車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的頻率代替車輛在停車場(chǎng)停留時(shí)間位于各區(qū)間的概率.

(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計(jì)了停車時(shí)長(zhǎng)與司機(jī)性別的列聯(lián)表:

完成上述列聯(lián)表,并判斷能否有的把握認(rèn)為停車是否超過(guò)6小時(shí)與性別有關(guān)?

(2)(i)X表示某輛車一天之內(nèi)(含一天)在該停車場(chǎng)停車一次所交費(fèi)用,求X的概率分布列及期望:

(ii)現(xiàn)隨機(jī)抽取該停車場(chǎng)內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于的車輛數(shù),求P()的概率.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCD,AB=2,BC=1,,E為PB中點(diǎn).

(Ⅰ)求證:PD∥平面ACE;

(Ⅱ)求證:PD⊥平面PBC;

(Ⅲ)求三棱錐E-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年來(lái),國(guó)家為了鼓勵(lì)高校畢業(yè)生自主創(chuàng)業(yè),出臺(tái)了許多優(yōu)惠政策,以創(chuàng)業(yè)帶動(dòng)就業(yè).某高校畢業(yè)生小李自主創(chuàng)業(yè)從事海鮮的批發(fā)銷售,他每天以每箱300元的價(jià)格購(gòu)入基圍蝦,然后以每箱500元的價(jià)格出售,如果當(dāng)天購(gòu)入的基圍蝦賣不完,剩余的就作垃圾處理.為了對(duì)自己的經(jīng)營(yíng)狀況有更清晰的把握,他記錄了150天基圍蝦的日銷售量(單位:箱),制成如圖所示的頻數(shù)分布條形圖.

1)若小李一天購(gòu)進(jìn)12箱基圍蝦.

①求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天的銷售量(單位:箱,)的函數(shù)解析式;

②以這150天記錄的日銷售量的頻率作為概率,求當(dāng)天的利潤(rùn)不低于1900元的概率;

2)以上述樣本數(shù)據(jù)作為決策的依據(jù),他計(jì)劃今后每天購(gòu)進(jìn)基圍蝦的箱數(shù)相同,并在進(jìn)貨量為11箱,12箱中選擇其一,試幫他確定進(jìn)貨的方案,以使其所獲的日平均利潤(rùn)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)fx)=Asinωx+B的部分圖象如圖所示,其中A0,ω0,|φ|

(Ⅰ)求函數(shù)yfx)解析式;

(Ⅱ)求x[0,]時(shí),函數(shù)yfx)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案