19.設(shè)函數(shù)f(x)=2kax+(k-3)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(Ⅰ)求k的值;
(Ⅱ)若f(2)<0,試判斷函數(shù)f(x)的單調(diào)性,并求使不等式f(x2-x)+f(tx+4)<0恒成立的t的取值范圍.

分析 (1)運(yùn)用f(0)=0求解.
(2)根據(jù)單調(diào)性得出不等式x2-x>-tx-4,即x2+(t-1)x+4>0恒成立.

解答 解:(1)因?yàn)閒(x)是定義域?yàn)镽的奇函數(shù),所以f(0)=0,
所以2k+(k-3)=0,即k=1,
檢驗(yàn)知,符合條件;
(2)f(x)=2(ax-a -x) (a>0且a≠1)
因?yàn)閒(2)<0,a2-$\frac{1}{{a}^{2}}$<0,又a>0且a≠1,所以0<a<1
因?yàn)閥=ax單調(diào)遞減,y=a -x單調(diào)遞增,故f(x)在R上單調(diào)遞減.
不等式化為f(x2-x)<f(-tx-4)
所以x2-x>-tx-4,即x2+(t-1)x+4>0恒成立,
所以△=(t-1)2-16<0,解得-3<t<5.

點(diǎn)評(píng) 本題考查了函數(shù)的性質(zhì),運(yùn)用求解數(shù)值,判斷單調(diào)性求解字母的范圍,屬于中檔題,綜合性較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.等差數(shù)列0,2,4,6,8,10,…按如下方法分組:(0),(2,4),(6,8,10),(12,14,16,18),…則第n組中n個(gè)數(shù)的和是( 。
A.$\frac{n(2{n}^{2}-n-1)}{2}$B.n(n2-1)C.n3-1D.$\frac{n({n}^{2}-1)}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖所示,四邊形ABCD中,AB=AD=2,△BCD為正三角形,設(shè)∠BAD=α(α∈(0,π)).
(1)當(dāng)α=$\frac{π}{2}$時(shí),求$\overrightarrow{AC}$•$\overrightarrow{BC}$的值;
(2)[重點(diǎn)中學(xué)做]當(dāng)α為多少時(shí),△ABC的面積S最大?并求S的最大值.
(3)[普通中學(xué)做]記△BCD的面積S=f(α),求函數(shù)g(α)=f(α)-2sinα的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,滿足“f(mn)=f(m)+f(n)”的函數(shù)是( 。
A.f(x)=xB.f(x)=x2C.f(x)=2xD.f(x)=lgx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知A={1,2,3},B={x∈N||x|=3},那么A∩B=( 。
A.3B.-3C.{-3,1,2,3}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=sin(2x-$\frac{π}{4}$)+1,x∈R.
(1)求f($\frac{π}{8}$)的值,并求函數(shù)f(x)的最小正周期;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=x2-b|x|+c,g(x)=kx+c-2(k>0),函數(shù)h(x)=f(x)-g(x),若f(-4)=f(0),f(-2)=-2,則當(dāng)函數(shù)h(x)的零點(diǎn)個(gè)數(shù)為2時(shí),k的取值范圍為( 。
A.$(2\sqrt{2},+∞)$B.$(4-2\sqrt{2},+∞)$C.(4,+∞)D.$(4+2\sqrt{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在用數(shù)學(xué)歸納法證明等式1+2+3+…+2n-1=2n2-n(n∈N*)的第(ii)步中,假設(shè)n=k(k≥1,k∈N*)時(shí)原等式成立,則當(dāng)n=k+1時(shí)需要證明的等式為( 。
A.1+2+3+…+(2k-1)+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
B.1+2+3+…+(2k-1)+[2(k+1)-1]=2(k+1)2-(k+1)
C.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2k2-k+2(k+1)2-(k+1)
D.1+2+3+…+(2k-1)+2k+[2(k+1)-1]=2(k+1)2-(k+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在四棱錐P-ABCD中,側(cè)面PCD⊥底面ABCD,PD⊥CD,E為PC中點(diǎn),底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求證:BE∥平面PAD;
(Ⅱ)求證:BC⊥平面PBD;
(Ⅲ)在線段PC上是否存在一點(diǎn)Q,使得二面角Q-BD-P為45°?若存在,求$\frac{{|{PQ}|}}{{|{PC}|}}$的值;若不存在,請(qǐng)述明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案