分析 (1)由已知可得QC•QB=QA2,即$\frac{QC}{QA}=\frac{QA}{QB}$,可得△QCA∽△QAB,進(jìn)而∠QAB=QCA,根據(jù)弦切角定理的逆定理可得QA為⊙O的切線;
(2)根據(jù)弦切角定理可得AC=BC=12,結(jié)合(1)中結(jié)論,可得QC:QA=AC:AB=12:6,進(jìn)而得到答案.
解答 證明:(1)∵QC2-QA2=BC•QC,
∴QC(QC-BC)=QA2,即QC•QB=QA2,
于是$\frac{QC}{QA}=\frac{QA}{QB}$,
∴△QCA~△QAB,
∴∠QAB=∠QCA,
根據(jù)弦切角定理的逆定理可得QA為⊙O的切線…(5分)
解:(2)∵QA為⊙O的切線,
∴∠PAC=∠ABC,而AC恰好為∠BAP的平分線,
∴∠BAC=∠ABC,于是AC=BC=12,
∴QC2-QA2=12QC,①
又由△QCA~△QAB得QC:QA=AC:AB=12:6,②
聯(lián)合①②消掉QC,得QA=8…(10分)
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是弦切角定理及其逆定理,圓的切線的判定與性質(zhì),三角形相似的判定與性質(zhì),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | $\frac{8}{3}$ | C. | $\frac{9}{4}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,$\frac{π}{4}$,1) | B. | (2$\sqrt{2}$,$\frac{π}{4}$,1) | C. | (2,$\frac{5π}{4}$,1) | D. | (2$\sqrt{2}$,$\frac{5π}{4}$,1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com