分析:(1)欲求:“當(dāng)n=2時(shí),
f(x)=+aln(x-1)”的極值,利用導(dǎo)數(shù),求其導(dǎo)函數(shù)的零點(diǎn)及單調(diào)性進(jìn)行判斷即可;
(2)欲證:“f(x)≤x-1”,令
g(x)=x-1--ln(x-1),利用導(dǎo)函數(shù)的單調(diào)性,只要證明函數(shù)f(x)的最大值是x-1即可.
解答:解:(Ⅰ)解:由已知得函數(shù)f(x)的定義域?yàn)閧x|x>1},
當(dāng)n=2時(shí),
f(x)=+aln(x-1),所以
f′(x)=.
(1)當(dāng)a>0時(shí),由f'(x)=0得
x1=1+>1,
x2=1-<1,
此時(shí)
f′(x)=.
當(dāng)x∈(1,x
1)時(shí),f'(x)<0,f(x)單調(diào)遞減;
當(dāng)x∈(x
1,+∞)時(shí),f'(x)>0,f(x)單調(diào)遞增.
(2)當(dāng)a≤0時(shí),f'(x)<0恒成立,所以f(x)無(wú)極值.
綜上所述,n=2時(shí),
當(dāng)a>0時(shí),f(x)在
x=1+處取得極小值,極小值為
f(1+)=(1+ln).
當(dāng)a≤0時(shí),f(x)無(wú)極值.
(Ⅱ)證法一:因?yàn)閍=1,所以
f(x)=+ln(x-1).
當(dāng)n為偶數(shù)時(shí),
令
g(x)=x-1--ln(x-1),
則
g′(x)=1+-=+>0(x≥2).
所以當(dāng)x∈[2,+∞)時(shí),g(x)單調(diào)遞增,
又g(2)=0,
因此
g(x)=x-1--ln(x-1)≥g(2)=0恒成立,
所以f(x)≤x-1成立.
當(dāng)n為奇數(shù)時(shí),要證f(x)≤x-1,由于
<0,所以只需證ln(x-1)≤x-1,
令h(x)=x-1-ln(x-1),
則
h′(x)=1-=≥0(x≥2),
所以當(dāng)x∈[2,+∞)時(shí),h(x)=x-1-ln(x-1)單調(diào)遞增,又h(2)=1>0,
所以當(dāng)x≥2時(shí),恒有h(x)>0,即ln(x-1)<x-1命題成立.
綜上所述,結(jié)論成立.
證法二:當(dāng)a=1時(shí),
f(x)=+ln(x-1).
當(dāng)x≥2時(shí),對(duì)任意的正整數(shù)n,恒有
≤1,
故只需證明1+ln(x-1)≤x-1.
令h(x)=x-1-(1+ln(x-1))=x-2-ln(x-1),x∈[2,+∞),
則
h′(x)=1-=,
當(dāng)x≥2時(shí),h'(x)≥0,故h(x)在[2,+∞)上單調(diào)遞增,
因此當(dāng)x≥2時(shí),h(x)≥h(2)=0,即1+ln(x-1)≤x-1成立.
故當(dāng)x≥2時(shí),有
+ln(x-1)≤x-1.
即f(x)≤x-1.