1.復(fù)數(shù)${({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$的共軛復(fù)數(shù)是( 。
A.-iB.iC.-1D.1

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:$(\frac{1}{2}+\frac{\sqrt{3}}{2}i)^{2}$=$\frac{1}{4}-\frac{3}{4}+\frac{\sqrt{3}}{2}$i=-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i.
∴復(fù)數(shù)${({\frac{1}{2}+\frac{{\sqrt{3}}}{2}i})^3}$=(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)($\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)=-1,
其共軛復(fù)數(shù)是-1.
故選:C.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,為測得河岸上塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10m到位置D,測得∠BDC=45°,則塔AB的高是10$\sqrt{6}$m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖所示:在邊長為1的正方形OABC中任取一點(diǎn)P,則點(diǎn)P恰好取自陰影部分的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{5}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{y≤2x+2}\end{array}}\right.$,則z=2x+y的最大值與最小值和等于( 。
A.-4B.-2C.2D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}的前n項和Sn=n2-6n,第k項滿足7<ak<10,則k=(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.向上拋擲兩個質(zhì)地均勻的骰子記向上點(diǎn)數(shù)之和為X
(1)求P(X=4).
(2)求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.記f(n)(x)為函數(shù)f(x)的n(n∈N*)階導(dǎo)函數(shù),即f(n)(x)=[f(n-1)(x)]′(n≥2,n∈N*).若f(x)=cosx,且集合M={m|f(m)(x)=sinx,m∈N*,m≤2017},則集合M中元素的個數(shù)為( 。
A.1006B.1007C.503D.504

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合M={x|x<3},集合N={x|0<x<2},則下列關(guān)系中正確的是(  )
A.M∪N=RB.M∪∁RN=RC.N∪∁RM=RD.M∩N=M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式x2-x-6<0的解集為( 。
A.{x|x<-2或x>3}B.{x|x<-2}C.{x|-2<x<3}D.{x|x>3}

查看答案和解析>>

同步練習(xí)冊答案