【題目】環(huán)境問題是當今世界共同關(guān)注的問題,我國環(huán)保總局根據(jù)空氣污染指數(shù)溶度,制定了空氣質(zhì)量標準:

某市政府為了打造美麗城市,節(jié)能減排,從2010年開始考查了連續(xù)六年11月份的空氣污染指數(shù),繪制了頻率分布直方圖,經(jīng)過分析研究,決定從2016年11月1日起在空氣質(zhì)量重度污染和嚴重污染的日子對機動車輛限號出行,即車牌尾號為單號的車輛單號出行,車牌尾號為雙號的車輛雙號出行(尾號為字母的,前13個視為單號,后13個視為雙號).王先生有一輛車,若11月份被限行的概率為0.05.

(1)求頻率分布直方圖中的值;

(2)若按分層抽樣的方法,從空氣質(zhì)量良好與中度污染的天氣中抽取6天,再從這6天中隨機抽取2天,求至少有一天空氣質(zhì)量中度污染的概率;

(3)該市環(huán)保局為了調(diào)查汽車尾氣排放對空氣質(zhì)量的影響,對限行兩年來的11月份共60天的空氣質(zhì)量進行統(tǒng)計,其結(jié)果如表:

根據(jù)限行前6年180天與限行后60天的數(shù)據(jù),計算并填寫列聯(lián)表,并回答是否有的把握認為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式: ,其中

【答案】1.(2.(3見解析

【解析】試題分析:(1)王先生的車被限行的概率為0.05,空氣重度污染和嚴重污染的概率應(yīng)為,由頻率分布直方圖可知: ,解得;(2)空氣質(zhì)量良好與重度污染的天氣的概率之比為,按分層抽樣從中抽取6天,則空氣質(zhì)量良好天氣被抽取4天,記作, , , ,空氣中度污染天氣被抽取2天,記作, 窮舉得至少有一天空氣質(zhì)量中度污染的概率為;(3列聯(lián)表由表中數(shù)據(jù)可得,所以有的把握認為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).

試題解析

(1)因為限行分單雙號,王先生的車被限行的概率為0.05,

所以空氣重度污染和嚴重污染的概率應(yīng)為,

由頻率分布直方圖可知: ,解得

(2)因為空氣質(zhì)量良好與重度污染的天氣的概率之比為,

按分層抽樣從中抽取6天,則空氣質(zhì)量良好天氣被抽取4天,記作, ,

空氣中度污染天氣被抽取2天,記作 ,

從這6天中隨機抽取2天,所包含的基本事件有: , , , , , , , , , 共15個,

記事件為“至少有一天空氣質(zhì)量中度污染”,則事件所包含的基本事件有: , , , , , , , , 共9個,

,

即至少有一天空氣質(zhì)量中度污染的概率為

(3)列聯(lián)表如下:

空氣質(zhì)量優(yōu)、良

空氣質(zhì)量污染

合計

限行前

90

90

180

限行后

38

22

60

合計

128

112

240

由表中數(shù)據(jù)可得,

所以有的把握認為空氣質(zhì)量的優(yōu)良與汽車尾氣的排放有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機變量ξi滿足P(ξi=1)=pi,P(ξi=0)=1-pii=1,2.若0<p1p2,則(  )

A. E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)

B. E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)

C. E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)

D. E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】歷史上,許多人研究過圓錐的截口曲線.如圖,在圓錐中,母線與旋轉(zhuǎn)軸夾角為,現(xiàn)有一截面與圓錐的一條母線垂直,與旋轉(zhuǎn)軸的交點到圓錐頂點的距離為,對于所得截口曲線給出如下命題:

①曲線形狀為橢圓;

②點為該曲線上任意兩點最長距離的三等分點;

③該曲線上任意兩點間的最長距離為,最短距離為;

④該曲線的離心率為.其中正確命題的序號為 ( )

A. ①②④B. ①②③④C. ①②③D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點是曲線上一點,,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】乙兩人同時參加一次數(shù)學(xué)測試,共有20道選擇題,每題均有4個選項,答對得3,答錯或不答得0,甲和乙都解答了所有的試題,經(jīng)比較,他們只有2道題的選項不同,如果甲最終的得分為54,那么乙的所有可能的得分值組成的集合為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的極坐標方程是,以極點為原點,以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標系,直線的參數(shù)方程為 .

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從2017年1月18日開始,支付寶用戶可以通過“掃‘!帧焙汀皡⑴c螞蟻森林”兩種方式獲得?ǎ◥蹏!⒏粡姼!⒑椭C福、友善福,敬業(yè)福),除夕夜22:18,每一位提前集齊五福的用戶都將獲得一份現(xiàn)金紅包.某高校一個社團在年后開學(xué)后隨機調(diào)查了80位該校在讀大學(xué)生,就除夕夜22:18之前是否集齊五福進行了一次調(diào)查(若未參與集五福的活動,則也等同于未集齊五福),得到具體數(shù)據(jù)如下表:

1)根據(jù)如上的列聯(lián)表,能否在犯錯誤的概率不超過0.05的前提下,認為“集齊五福與性別有關(guān)”?

2)計算這80位大學(xué)生集齊五福的頻率,并據(jù)此估算該校10000名在讀大學(xué)生中集齊五福的人數(shù);

3)為了解集齊五福的大學(xué)生明年是否愿意繼續(xù)參加集五;顒,該大學(xué)的學(xué)生會從集齊五福的學(xué)生中,選取2位男生和3位女生逐個進行采訪,最后再隨機選取3次采訪記錄放到該大學(xué)的官方網(wǎng)站上,求最后被選取的3次采訪對象中至少有一位男生的概率.

參考公式 .

附表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中(圖1),, , ,過、分別作的垂線,垂足分別為、,已知 ,將梯形沿、同側(cè)折起,使得 ,得空間幾何體(圖2). 

(1)證明: 平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)三月中旬生產(chǎn)A、BC三種產(chǎn)品共3 000件,根據(jù)分層抽樣的結(jié)果,企業(yè)統(tǒng)計員制作了如下的統(tǒng)計表格:

產(chǎn)品類別

A

B

C

產(chǎn)品數(shù)量(件)

1 300

樣本容量(件)

130

由于不小心,表格中AC產(chǎn)品的有關(guān)數(shù)據(jù)已被污染看不清楚,統(tǒng)計員記得A產(chǎn)品的樣本容量比C產(chǎn)品的樣本容量多10,根據(jù)以上信息,可得C的產(chǎn)品數(shù)量是(

A.80B.800C.90D.900

查看答案和解析>>

同步練習(xí)冊答案