1.已知向量|$\overrightarrow{a}$|=2,其中$\overrightarrow{a}$在$\overrightarrow$上的投影為-1,且($\overrightarrow{a}$-2$\overrightarrow$)($\overrightarrow{a}$+2$\overrightarrow$)=0
(1)試求$\overrightarrow{a}$與$\overrightarrow$的夾角θ及|$\overrightarrow$|;
(2)若向量$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow$,試求|$\overrightarrow{c}$|的值.

分析 (1)利用一個(gè)向量在另一個(gè)向量上的投影的定義求得cosθ的值,可得θ的值.
(2)由條件利用|$\overrightarrow{c}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow)}^{2}}$,計(jì)算求得結(jié)果.

解答 解:(1)設(shè)$\overrightarrow{a}$與$\overrightarrow$的夾角為θ,
則由題意可得|$\overrightarrow{a}$|•cosθ=2•cosθ=-1,cosθ=-$\frac{1}{2}$,
∴θ=$\frac{2π}{3}$.
∵($\overrightarrow{a}$-2$\overrightarrow$)($\overrightarrow{a}$+2$\overrightarrow$)=${\overrightarrow{a}}^{2}$-4${\overrightarrow}^{2}$=4-4${\overrightarrow}^{2}$=0,
∴|$\overrightarrow$|=1.
(2)若向量$\overrightarrow{c}$=$\overrightarrow{a}$+2$\overrightarrow$,
則|$\overrightarrow{c}$|=$\sqrt{{(\overrightarrow{a}+2\overrightarrow)}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}+4\overrightarrow{a}•\overrightarrow+{4\overrightarrow}^{2}}$
=$\sqrt{4+4•2•1•(-\frac{1}{2})+4}$=2.

點(diǎn)評(píng) 本題主要考查兩個(gè)向量的數(shù)量積的定義,一個(gè)向量在另一個(gè)向量上的投影,求向量的模的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了判斷學(xué)生解幾何題和代數(shù)題能力是否與性別有關(guān),線隨機(jī)抽取50名學(xué)生,得到如下2×2聯(lián)列表:(單位:人)
幾何題代數(shù)題總計(jì)
男同學(xué)22830
女同學(xué)81220
總計(jì)302050
(1)能否據(jù)此判斷有97.5%的把握認(rèn)為解幾何題和代數(shù)題能力與性別有關(guān)?
(2)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為 X,求 X的分布列及數(shù)學(xué)期望E(X).
(3)經(jīng)過多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在5~7分鐘,乙每次解答一道幾何題所用的時(shí)間在6~8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
附表及公式
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=|x-2|-3,g(x)=|x+3|
(1)解不等式f(x)<g(x);
(2)若不等式f(x)<g(x)+a對(duì)任意x∈R恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解方程組:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}+x+y=18}\\{{x}^{2}+xy+{y}^{2}=19}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求關(guān)于x的不等式m2x+2>2mx+m的解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)=ax2+ln(x+1)
(1)當(dāng)a=-$\frac{1}{4}$時(shí),求函數(shù)f(x)的單調(diào)區(qū)間
(2)當(dāng)x∈[0,+∞)時(shí),函數(shù)y=f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}{x≥0}\\{y-x≤0}\end{array}\right.$所表示的平面區(qū)域內(nèi),求實(shí)數(shù)a的取值范圍
(3)求證:(1+$\frac{2}{2×3}$)(1+$\frac{4}{3×5}$)(1+$\frac{8}{5×9}$)…[1+$\frac{{2}^{n}}{({2}^{n-1}+1)({2}^{n}+1)}$]<e(其中n∈N+,e是自然數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知四邊形ACED和四邊形CBFE都是矩形,且二面角A-CE-B是直二面角,AM垂直CD交CE于M.
(1)求證:AM⊥BD;
(2)若AD=$\sqrt{6}$,BC=1,AC=$\sqrt{3}$,求二面角M-AB-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在直角坐標(biāo)系xOy中,曲線${C_1}:\left\{{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}}\right.$(θ為參數(shù)),點(diǎn)P是曲線C1與x軸正半軸的交點(diǎn).在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系軸,曲線C2:ρcosθ+ρsinθ+3=0.
(1)求曲線C1的極坐標(biāo)方程和過點(diǎn)P的曲線C1的切線極坐標(biāo)方程;
(2)在曲線C1上求一點(diǎn)Q(a,b),它到曲線C2的距離最長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線C1:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(t為參數(shù)),圓C2:$\left\{\begin{array}{l}{x=tcosα+1}\\{y=tsinα+2}\end{array}\right.$(α為參數(shù))
(Ⅰ)若直線C1經(jīng)過點(diǎn)(2,3),求直線C1的普通方程;若圓C2經(jīng)過點(diǎn)(2,2),求圓C2的普通方程;
(Ⅱ)點(diǎn)P是圓C2上一個(gè)動(dòng)點(diǎn),若|OP|的最大值為4,求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案