如圖1,直角梯形中,,,,點(diǎn)為線段上異于的點(diǎn),且,沿將面折起,使平面平面,如圖2.
(1)求證:平面;
(2)當(dāng)三棱錐體積最大時,求平面與平面所成的銳二面角的余弦值.
(1)證明過程詳見解析;(2).
解析試題分析:本題考查立體幾何中的線面、面面關(guān)系,空間角,空間向量在立體幾何中的應(yīng)用等基礎(chǔ)知識;考查運(yùn)算求解能力、空間想象能力;考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化等數(shù)學(xué)思想.第一問,法一,由,利用線面平行的判定得面,再利用面面平行的判定得面面,最后利用面面平行的性質(zhì)得面;法二,建立空間直角坐標(biāo)系,要證明線面平行,只需證AB與面DFC的法向量垂直即可;第二問,建立空間直角坐標(biāo)系,利用三棱錐的體積公式計(jì)算體積,當(dāng)體積最大值時,AE=1,再利用向量法求平面ABC和平面AEFD的法向量,利用夾角公式求二面角的余弦值.
試題解析:(1)證明:∵,面,面,
∴面, 2分
同理面, 3分
又,∴面面, 4分
又面,∴面. 5分
(2)法一:∵面面,又,面面,
∴面.
以所在直線為軸,所在直線為軸,所在直線為軸,建立
空間直角坐標(biāo)系, 7分
設(shè),則,
,
∴當(dāng)時,三棱錐體積最大. 9分
∵, ∴, 10分
設(shè)平面的法向量, , ∴,
令,得平面
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知三角形△ABC與△BCD所在平面相互垂直,且∠BAC=∠BCD=90°,AB=AC,CB=CD,點(diǎn)P,Q分別在線段BD,CD上,沿直線PQ將△PQD向上翻折,使D與A重合.
(Ⅰ)求證:AB⊥CQ;
(Ⅱ)求BP的長;
(Ⅲ)求直線AP與平面ABC所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知一四棱錐P-ABCD的底面是邊長為1的正方形,且側(cè)棱PC⊥底面ABCD,且PC=2,E是側(cè)棱PC上的動點(diǎn)
(1)求四棱錐P-ABCD的體積;
(2)證明:BD⊥AE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知四棱錐的底面為菱形,面,且,,分別是的中點(diǎn).
(1)求證:∥平面;
(2)過作一平面交棱于點(diǎn),若二面角的大小為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正三棱柱ABC-A1B1C1的底面邊長為8,側(cè)棱長為6,D為AC中點(diǎn)。
(1)求證:直線AB1∥平面C1DB;
(2)求異面直線AB1與BC1所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是平行四邊形,,,面,設(shè)為中點(diǎn),點(diǎn)在線段上且.
(1)求證:平面;
(2)設(shè)二面角的大小為,若,求的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
理)如圖,正四面體的頂點(diǎn),,分別在兩兩垂直的三條射線,,上,則在下列命題中,正確命題的個數(shù)為_______.
(1)是正三棱錐 ;
(2)直線∥平面;
(3)直線與所成的角是;
(4)二面角為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com