【題目】假設關于某設備的使用年限x(年)和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)畫出散點圖并判斷是否線性相關;
(2)如果線性相關,求線性回歸方程;
(3)估計使用年限為10年時,維修費用是多少?
【答案】
(1)解:如圖所示:
(2)解:根據(jù)題意列表如下:
i | 1 | 2 | 3 | 4 | 5 |
xi | 2 | 3 | 4 | 5 | 6 |
yi | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
xiyi | 4.4 | 11.4 | 22.0 | 32.5 | 42.0 |
|
計算得:
于是可得:a=5﹣1.23×4=0.08
即得線性回歸方程為:y═1.23x+0.08
(3)解:x=10時,預報維修費用是y=1.23×10+0.08=12.3,
因此估計使用10年維修費用為12.38萬元
【解析】解:(1)作散點圖如下:
由散點圖可知是線性相關的…
(1)利用描點法可得圖象;(2)根據(jù)所給的數(shù)據(jù),做出變量x,y的平均數(shù),再求出a,b的值,即可求線性回歸方程;(3)當自變量為10時,代入線性回歸方程,求出維修費用,這是一個預報值.
科目:高中數(shù)學 來源: 題型:
【題目】某工廠生產(chǎn)一種儀器的元件,由于受生產(chǎn)能力和技術水平等因素的限制,會產(chǎn)生一些次品,根據(jù)經(jīng)驗知道,次品數(shù)P(萬件)與日產(chǎn)量x(萬件)之間滿足關系: 已知每生產(chǎn)l萬件合格的元件可以盈利2萬元,但每生產(chǎn)l萬件次品將虧損1萬元.(利潤=盈利一虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤T(萬元)表示為日產(chǎn)量x(萬件)的函數(shù);
(2)當工廠將這種儀器的元件的日產(chǎn)量x定為多少時獲得的利潤最大,最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某超市為了解顧客的購物量及結(jié)算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數(shù)據(jù),如下表所示.
一次購物量 | 1至4件 | 5至8件 | 9至12件 | 13至16件 | 17件及以上 |
顧客數(shù)(人) | x | 30 | 25 | y | 10 |
結(jié)算時間(分鐘/人) | 1 | 1.5 | 2 | 2.5 | 3 |
已知這100位顧客中一次購物量超過8件的顧客占55%.
(Ⅰ)確定x,y的值,并求顧客一次購物的結(jié)算時間X的分布列與數(shù)學期望;
(Ⅱ)若某顧客到達收銀臺時前面恰有2位顧客需結(jié)算,且各顧客的結(jié)算相互獨立,求該顧客結(jié)算前的等候時間不超過2.5分鐘的概率.
(注:將頻率視為概率)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對一批產(chǎn)品的長度(單位:mm)進行抽樣檢測,下圖為檢測結(jié)果的頻率分布直方圖.根據(jù)標準,產(chǎn)品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產(chǎn)品中隨機抽取一件,則其為二等品的概率為( )
A.0.09
B.0.20
C.0.25
D.0.45
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域是D,若存在常數(shù)m、M,使得m≤f(x)≤M對任意x∈D成立,則稱函數(shù)f(x)是D上的有界函數(shù),其中m稱為函數(shù)f(x)的下界,M稱為函數(shù)f(x)的上界;特別地,若“=”成立,則m稱為函數(shù)f(x)的下確界,M稱為函數(shù)f(x)的上確界. (Ⅰ)判斷 是否是有界函數(shù)?說明理由;
(Ⅱ)若函數(shù)f(x)=1+a2x+4x(x∈(﹣∞,0))是以﹣3為下界、3為上界的有界函數(shù),求實數(shù)a的取值范圍;
(Ⅲ)若函數(shù) ,T(a)是f(x)的上確界,求T(a)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點.
(I)若A,B兩點的縱會標分別為 的值;
(II)已知點C是單位圓上的一點,且 的夾角θ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其中 (為自然對數(shù)的底數(shù)).
(Ⅰ)討論函數(shù)的單調(diào)性,并寫出相應的單調(diào)區(qū)間;
(Ⅱ)設,若函數(shù)對任意都成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某商場柜臺銷售某種產(chǎn)品,每件產(chǎn)品的成本為10元,并且每件產(chǎn)品需向該商場交a元(3≤a≤7)的管理費,預計當每件產(chǎn)品的售價為x元(20≤x≤25)時,一天的銷售量為(x﹣30)2件. (Ⅰ)求該柜臺一天的利潤f(x)(元)與每件產(chǎn)品的售價x的函數(shù)關系式;
(Ⅱ)當每件產(chǎn)品的售價為多少元時,該柜臺一天的利潤f(x)最大,并求出f(x)的最大值g(a).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0, )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對稱中心.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com