若函數(shù)f(x)=|sinx|的圖象與y=kx僅有三個(gè)公共點(diǎn)且橫坐標(biāo)分別為α,β,r(α<β<r)則下列命題正確的是(  )
A、α=0
B、β∈(0,π)
C、r=tanr
D、k=-cosr
考點(diǎn):正弦函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:首先,根據(jù)題意,畫出圖象,然后,對(duì)交點(diǎn)情況進(jìn)行討論.
解答: 解:如圖所示:

∵函數(shù)f(x)=|sinx|的圖象與y=kx僅有三個(gè)公共點(diǎn),
且α<β<r,
∴-
2
<α<β<r=0,或0=α<β<r<
2
,
不妨設(shè)0=α<β<r<
2

∵直線與 y=-sinx 相切,
∴k=-
sinγ
γ
,同時(shí),由 y'=-cosx,
∴k=-cosγ,
因此,-
sinγ
γ
=-cosγ,
∴γ=tanγ.
故選:C.
點(diǎn)評(píng):本題重點(diǎn)考查了三角函數(shù)圖象與性質(zhì)、三角函數(shù)圖象變換等知識(shí),屬于中檔題.解題關(guān)鍵是數(shù)形結(jié)合思想在解題中的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知線段AB的端點(diǎn)B的坐標(biāo)為(1,3),端點(diǎn)A在圓C:(x+1)2+y2=4上運(yùn)動(dòng).
(1)求線段AB的中點(diǎn)M的軌跡方程;
(2)若直線l1過點(diǎn)B,且與圓C相切,求l1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=
x
lnx
,f(x)=g(x)-ax.
(Ⅰ)求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù),求實(shí)數(shù)a的最小值;
(Ⅲ)若函數(shù)h(x)=g(x)-bx2恰有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin2(ωx+φ)(A>0,ω>0,0<φ<
π
2
,且y=f(x)的最大值為2,其圖象相鄰兩對(duì)稱軸間的距離為2,并過點(diǎn)(1,2).
(1)求φ;
(2)計(jì)算f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若cos(π+α)=-
1
2
,
3
2
π<α<2π,則sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B、C分別為橢圓
x2
a2
+
y2
b2
=1(a>b>0)的頂點(diǎn)與焦點(diǎn),若∠ABC=90°,
求該橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面能得出△ABC為銳角三角形的條件是( 。
A、sinA+cosA=
1
5
B、tanA+tanB+tanC>0
C、b=3,c=3
3
,B=30°
D、
AB
BC
<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線ax+2by=1與圓x2+y2=1相交于A,B兩點(diǎn)(其中a,b是實(shí)數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點(diǎn)),則點(diǎn)P(a,b)與點(diǎn)Q(0,0)之間距離的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有根木料長為6米,要做一個(gè)如圖的窗框,已知上框架與下框架的高的比為1:2,問怎樣利用木料,才能使光線通過的窗框面積最大(中間木檔的面積可忽略不計(jì)).

查看答案和解析>>

同步練習(xí)冊(cè)答案