16.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.$\frac{8}{3}+2π$B.$\frac{8}{3}+π$C.4+2πD.4+π

分析 幾何體是三棱柱與半圓柱的組合體,根據(jù)三視圖判斷三棱柱的高及底面為等腰直角三角形的相關幾何量的數(shù)據(jù),判斷半圓柱的高及底面半徑,把數(shù)據(jù)代入棱錐與圓柱的體積公式計算可得.

解答 解:由三視圖知:幾何體是三棱柱與半圓柱的組合體,
且三棱柱與半圓柱的高都是2,三棱柱的一側(cè)面為圓柱的軸截面,
三棱柱的底面為等腰直角三角形,且腰長為2,
半圓柱的底面半徑為1,
∴幾何體的體積V=$\frac{1}{2}$×2×22+$\frac{1}{2}$×π×12×2=4+π.
故選:D.

點評 本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應的幾何量是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,A=30°,C=45°,則$\frac{2a+c}{2a-c}$=3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖.已知四棱錐P-ABCD,底面ABCD為梯形.PA⊥底面ABCD,AB=BC=2,∠ABC=60°,AD∥BC,AC⊥CD.E為PD中點.
(I)求證:CE∥平面PAB;
(II)若PB與平面PAC所成角的正弦值為$\frac{\sqrt{6}}{4}$,求平面PAB與平面PCD所成的銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,四棱錐P-ABCD的底面是菱形,∠ABC=60°,PA⊥底面ABCD,E,F(xiàn)分別是BC,PC的中點,點H在PD上,且EH⊥PD,PA=AB=2.
(1)求證:EH∥平面PBA;
(2)求平面FAH與平面EAH所成二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)f(x)=log2x-4+2x的零點位于區(qū)間(  )
A.(3,4)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,在平行四邊形ABCD中,AB=1,BC=2,∠CBA=$\frac{π}{3}$,ABEF為直角梯形,BE∥AF,∠BAF=$\frac{π}{2}$,BE=2,AF=3,平面ABCD⊥平面ABEF.
(1)求證:AC⊥平面ABEF;
(2)求平面ABCD與平面DEF所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如圖所示,在楊輝三角中,斜線AB上方箭頭所示的數(shù)組成一個鋸齒形的數(shù)列:1,2,3,3,6,4,10,…,記這個數(shù)列的前n項和為S(n),則S(16)等于( 。
A.144B.146C.164D.461

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立坐標系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=at}\end{array}\right.$,(t為參數(shù)),曲線C1的方程為ρ(ρ-4sinθ)=12,定點A(6,0),點P是曲線C1上的動點,Q為AP的中點.
(1)求點Q的軌跡C2的直角坐標方程;
(2)直線l與直線C2交于M,N兩點,若|MN|≥2$\sqrt{3}$,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在△ABC中,A、B、C所對的邊分別為a、b、c,且a=4,cosA=$\frac{3}{4}$,sinB=$\frac{5\sqrt{7}}{16}$,c>4.
(1)求b;
(2)求證:C=2A.

查看答案和解析>>

同步練習冊答案