【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)若曲線在點(diǎn)處的切線與曲線有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1);(2)或.
【解析】試題分析:(1)求出f(x)的導(dǎo)數(shù),由導(dǎo)數(shù)大于0,可得增區(qū)間;
(2)求出f(x)導(dǎo)數(shù),求得切線的斜率和切點(diǎn),可得切線方程,由題意可得關(guān)于x的方程有且只有一個(gè)解,即有且只有一個(gè)解.令,求出導(dǎo)數(shù),對(duì)m討論,求出單調(diào)區(qū)間,運(yùn)用單調(diào)性即可得到m的范圍.
試題解析:
(1)由題意知, ,
所以.
令得,所以函數(shù)的單調(diào)增區(qū)間是
所以曲線在點(diǎn)處的切線的方程為,
因?yàn)?/span>與曲線有且只有一個(gè)公共點(diǎn),
即關(guān)于的方程有且只有一個(gè)解,
即有且只有一個(gè)解.
令,
則.
①時(shí),由得,由,得,
所以函數(shù)在上為增函數(shù),在上為減函數(shù),
又,故符合題意;
②當(dāng)時(shí),由,得或,由,得,
所以函數(shù)在上為增函數(shù),在上為減函數(shù),在上為減函數(shù),
又,且當(dāng)時(shí), ,此時(shí)曲線與軸有兩個(gè)交點(diǎn),
故不合題意;
③當(dāng)時(shí), 在上為增函數(shù),且,
故符合題意;
④當(dāng),由,得或,由,得,
所以函數(shù)在上為增函數(shù),在上為減函數(shù),在上為增函數(shù),
又,且當(dāng) 時(shí), ,此時(shí)曲線與軸有兩個(gè)交點(diǎn),
故不合題意;
綜上,實(shí)數(shù)的取值范圍或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)時(shí), ;
(3)確定實(shí)數(shù)的值,使得存在當(dāng)時(shí),恒有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,且∠DAC=90°,cosC= ,AB=6,BD= ,則ADsin∠BAD= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: + =1(α>b>0)的右焦點(diǎn)到直線x﹣y+3 =0的距離為5,且橢圓的一個(gè)長(zhǎng)軸端點(diǎn)與一個(gè)短軸端點(diǎn)間的距離為 .
(1)求橢圓C的方程;
(2)在x軸上是否存在點(diǎn)Q,使得過(guò)Q的直線與橢圓C交于A、B兩點(diǎn),且滿足 + 為定值?若存在,請(qǐng)求出定值,并求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是R上的偶函數(shù),其中e是自然對(duì)數(shù)的底數(shù).
(1)求實(shí)數(shù)的值;
(2)探究函數(shù)在上的單調(diào)性,并證明你的結(jié)論;
(3)若函數(shù)有零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過(guò)原點(diǎn)的直線交橢圓于兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若,
求證:直線過(guò)定點(diǎn);
(ii)試問點(diǎn)能否關(guān)于軸對(duì)稱?若能,求出此時(shí)的外接圓方程;若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)的圖像與軸的交點(diǎn)為,在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)與軸交點(diǎn)分別為
(1)求的解析式;
(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),再將所得圖像沿軸正方向平移個(gè)單位,得到函數(shù)的圖像,求的解析式;
(3)在(2)的條件下求函數(shù)在上的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)十九大報(bào)告提出的實(shí)施鄉(xiāng)村振興戰(zhàn)略,某村莊投資 萬(wàn)元建起了一座綠色農(nóng)產(chǎn)品加工廠.經(jīng)營(yíng)中,第一年支出 萬(wàn)元,以后每年的支出比上一年增加了 萬(wàn)元,從第一年起每年農(nóng)場(chǎng)品銷售收入為 萬(wàn)元(前 年的純利潤(rùn)綜合=前 年的 總收入-前 年的總支出-投資額 萬(wàn)元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤(rùn)達(dá)到最大?并求出年平均純利潤(rùn)的最大值.
【答案】(1) 從第 開始盈利(2) 該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元
【解析】試題分析:(1)根據(jù)公式得到,令函數(shù)值大于0解得參數(shù)范圍;(2)根據(jù)公式得到,由均值不等式得到函數(shù)最值.
解析:
由題意可知前 年的純利潤(rùn)總和
(1)由 ,即 ,解得
由 知,從第 開始盈利.
(2)年平均純利潤(rùn)
因?yàn)?/span> ,即
所以
當(dāng)且僅當(dāng) ,即 時(shí)等號(hào)成立.
年平均純利潤(rùn)最大值為 萬(wàn)元,
故該廠第 年年平均純利潤(rùn)達(dá)到最大,年平均純利潤(rùn)最大值為 萬(wàn)元.
【題型】解答題
【結(jié)束】
21
【題目】已知數(shù)列 的前 項(xiàng)和為 ,并且滿足 , .
(1)求數(shù)列 通項(xiàng)公式;
(2)設(shè) 為數(shù)列 的前 項(xiàng)和,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x3+ax2+bx+c滿足f'(0)=4,f'(-2)=0。
(1)求a,b的值及曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)若函數(shù)f(x)有三個(gè)不同的零點(diǎn),求c的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com