【題目】從數(shù)列中取出部分項(xiàng)組成的數(shù)列稱(chēng)為數(shù)列的“子數(shù)列”.
(1)若等差數(shù)列的公差,其子數(shù)列恰為等比數(shù)列,其中,,,求;
(2)若,,判斷數(shù)列是否為的“子數(shù)列”,并證明你的結(jié)論.
【答案】(1)3n﹣1﹣n(2)見(jiàn)解析
【解析】
(1)運(yùn)用等比數(shù)列的中項(xiàng)性質(zhì)和等差數(shù)列的通項(xiàng)公式,求得首項(xiàng)和公差的關(guān)系,可得等比數(shù)列的公比,結(jié)合等比數(shù)列的通項(xiàng)公式,可得kn=23n﹣1﹣1,再由數(shù)列的分組求和,即可得到所求和;
(2)數(shù)列{bn}為{an}的“子數(shù)列”.由3k﹣2=4n,可得3k=4n+2,運(yùn)用二項(xiàng)式定理即可得證.
(1)等差數(shù)列{an}的公差d≠0,其子數(shù)列{a}恰為等比數(shù)列,
其中k1=1,k2=5,k3=17,可得aa1,aa5,aa17,
且有a52=a1a17,即(a1+4d)2=a1(a1+16d),
化為a1=2d,則an=a1+(n﹣1)d=(n+1)d,
子數(shù)列{a}為首項(xiàng)為2d,公比為3的等比數(shù)列,
則a2d3n﹣1=(kn+1)d,可得kn=23n﹣1﹣1,
則k1+k2+…+kn=(2+6+…+23n﹣1)﹣n
n=3n﹣1﹣n;
(2)若an=3n﹣2,bn=4n,數(shù)列{bn}為{an}的“子數(shù)列”.
由3k﹣2=4n,可得3k=4n+2,
由4n=(1+3)n=1+C3+C32+…+3n,
即有4n+2=3(1+CC3+…+3n﹣1),顯然為3的倍數(shù),
故數(shù)列{bn}為{an}的“子數(shù)列”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①,不等式恒成立;
②若,則;
③“若且,則”的逆否命題;
④若命題,命題,則命題是真命題.
其中,真命題為( )
A.①③④B.①②C.①②③D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,隨著中國(guó)第一款5G手機(jī)投入市場(chǎng),5G技術(shù)已經(jīng)進(jìn)入高速發(fā)展階段.已知某5G手機(jī)生產(chǎn)廠家通過(guò)數(shù)據(jù)分析,得到如下規(guī)律:每生產(chǎn)手機(jī)萬(wàn)臺(tái),其總成本為,其中固定成本為800萬(wàn)元,并且每生產(chǎn)1萬(wàn)臺(tái)的生產(chǎn)成本為1000萬(wàn)元(總成本=固定成本+生產(chǎn)成本),銷(xiāo)售收入萬(wàn)元滿(mǎn)足
(1)將利潤(rùn)表示為產(chǎn)量萬(wàn)臺(tái)的函數(shù);
(2)當(dāng)產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形的兩條對(duì)角線相交于點(diǎn), 邊所在直線的方程為,點(diǎn)在邊所在的直線上.
(Ⅰ)求邊所在直線的方程;
(Ⅱ)求矩形外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn),,給出下列曲線方程:(1);(2);(3);(4),在曲線上存在點(diǎn)滿(mǎn)足的所有曲線是( )
A.(1)(2)(3)(4)B.(2)(3)
C.(1)(4)D.(2)(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù),則下列結(jié)論錯(cuò)誤的是( )
A. 是偶函數(shù) B. 的值域是
C. 方程的解只有 D. 方程的解只有
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列同時(shí)滿(mǎn)足:①對(duì)于任意的正整數(shù), 恒成立;②對(duì)于給定的正整數(shù), 對(duì)于任意的正整數(shù)恒成立,則稱(chēng)數(shù)列是“數(shù)列”.
(1)已知判斷數(shù)列是否為“數(shù)列”,并說(shuō)明理由;
(2)已知數(shù)列是“數(shù)列”,且存在整數(shù),使得, , , 成等差數(shù)列,證明: 是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知三棱錐O—ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=1,OB=OC=2,E是OC的中點(diǎn).
(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A—BE—C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿(mǎn)足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com