7.已知函數(shù)f(x)=x+ex-a,$g(x)=\frac{1}{2}1n(2x+1)-4{e^{a-x}}$,其中e為自然對數(shù)的底數(shù),若存在實(shí)數(shù)x0,使f(x0)-g(x0)=4成立,則實(shí)數(shù)a的值為( 。
A.n2-1B.1-1n2C.1n2D.-1n2

分析 求出f(x)-g(x)的解析式,令$h(x)=x-\frac{1}{2}ln(2x+1)$,根據(jù)函數(shù)的單調(diào)性求出h(x)的最小值,結(jié)合不等式的性質(zhì)求出對應(yīng)的a的值即可.

解答 解:f(x)-g(x)=$x-\frac{1}{2}ln(2x+1)+{e^{x-a}}+4{e^{a-x}}$,
令$h(x)=x-\frac{1}{2}ln(2x+1)$,則$h'(x)=1-\frac{1}{2x+1}$,
知h(x)在$(-\frac{1}{2},0)$上是減函數(shù),在(0,+∞)上是增函數(shù),所以h(x)min=h(0)=0,
又${e^{x-a}}+4{e^{a-x}}≥2\sqrt{{e^{x-a}}•4{e^{a-x}}}=4$
所以f(x)-g(x)≥4,
當(dāng)且僅當(dāng)$\left\{\begin{array}{l}x=0\\{e^{x-a}}=4{e^{a-x}}\end{array}\right.$即x=0,a=-ln2,
故選:D.

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的性質(zhì),是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在(1-2x)7(1+x)的展開式中,含x2項(xiàng)的系數(shù)為( 。
A.71B.70C.21D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)正方形ABCD邊長為2,H是邊DA的中點(diǎn),若在正方形ABCD內(nèi)部隨機(jī)取一點(diǎn)P,則滿足|PH|<$\sqrt{2}$的概率為$\frac{2+π}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,且PA=PB=PC=PD,MB=2AM,CN=2PN
(1)求證:MN∥面PAD
(2)求證:BD⊥PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知邊長為$\sqrt{3}$的正△ABC的三個(gè)頂點(diǎn)都在球O的表面上,且OA與平面ABC所成的角為60°,則球O的表面積為$\frac{16}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某經(jīng)銷商從外地水產(chǎn)養(yǎng)殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計(jì)值;
(2)若購進(jìn)這批小龍蝦100千克,試估計(jì)這批小龍蝦的數(shù)量;
(3)為適應(yīng)市場需求,了解這批小龍蝦的口感,該經(jīng)銷商將這40只小龍蝦分成三個(gè)等級,如下表:
等級一等品二等品三等品
重量(g)[5,25)[25,45)[45,55]
按分層抽樣抽取10只,再隨機(jī)抽取3只品嘗,記X為抽到二等品的數(shù)量,求抽到二級品的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某經(jīng)銷商從外地一水殖廠購進(jìn)一批小龍蝦,并隨機(jī)抽取40只進(jìn)行統(tǒng)計(jì),按重量分類統(tǒng)計(jì)結(jié)果如下圖:

(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計(jì)值;
(2)試估計(jì)這批小龍蝦的平均重量;
(3)為適應(yīng)市場需求,制定促銷策略.該經(jīng)銷商又將這批小龍蝦分成三個(gè)等級,并制定出銷售單價(jià),如下表:
等級一等品二等品三等品
重量(g)[5,25)[25,35)[35,55]
單價(jià)(元/只)1.21.51.8
試估算該經(jīng)銷商以每千克至多花多少元(取整數(shù))收購這批小龍蝦,才能獲得利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足條件$\left\{\begin{array}{l}x≥y\\ 2x+y-2≥0\\ x≤1\end{array}\right.$,則z=y-2x的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等比數(shù)列{an}的公比q=2,前3項(xiàng)和是7,等差數(shù)列{bn}滿足b1=3,2b2=a2+a4
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)求數(shù)列$\left\{{\frac{2}{{(2n-1){b_n}}}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊答案