13.在△ABC中,若b2+c2-a2=bc,則角A的值為( 。
A.30°B.60°C.120°D.150°

分析 根據(jù)題中的等式,利用余弦定理算出cosA=$\frac{1}{2}$,結(jié)合0°<A<180°可得A=60°.

解答 解:∵在△ABC中,b2+c2-a2=bc,
∴根據(jù)余弦定理,得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{bc}{2bc}$=$\frac{1}{2}$,
又∵0°<A<180°,
∴A=60°.
故選:B.

點(diǎn)評(píng) 本題給出三角形的三邊的平方關(guān)系,求角A的大。乜疾榱死糜嘞叶ɡ斫馊切蔚闹R(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在五棱錐F-ABCDE中,平面AEF⊥平面ABCDE,AF=EF=1,AB=DE=2,BC=CD=3,且∠AFE=∠ABC=∠BCD=∠CDE=90°.
(1)已知點(diǎn)G在線段FD上,確定G的位置,使得AG∥平面BCF;
(2)點(diǎn)M,N分別在線段DE,BC上,若沿直線MN將四邊形MNCD向上翻折,D與F恰好重合,求直線BM與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在棱長(zhǎng)為1正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn),G分別為DD1,BD,BB1的中點(diǎn),則EF,CG所成角的余弦值為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{15}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{15}}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知向量$\overrightarrow{a}$=(2,4),$\overrightarrow$=(x,3),且($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow$,則x=-1或3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,PA⊥⊙O面,PA=2,AB為⊙O的直徑,其長(zhǎng)為4,四邊形ABCD內(nèi)接于圓O,且∠ADC=120°.
(1)求點(diǎn)C到平面PAB的距離;
(2)當(dāng)D在$\widehat{AC}$上什么位置時(shí),BC∥平面POD;
(3)在(2)的條件下,求二面角D-PC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=2sinx的定義域?yàn)閇a,b],值域?yàn)閇-2,$\sqrt{3}$],則b-a的最大值和最小值之和等于(  )
A.B.$\frac{7π}{2}$C.$\frac{5π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個(gè)長(zhǎng)方體共頂點(diǎn)的三個(gè)面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,這個(gè)長(zhǎng)方體的八個(gè)頂點(diǎn)都在同一個(gè)球面上,則這個(gè)球的表面積是6π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)已知橢圓的離心率為$\frac{{\sqrt{2}}}{2}$,準(zhǔn)線方程為x=±8,求該橢圓的標(biāo)準(zhǔn)方程
(2)求與雙曲線x2-2y2=2有公共漸近線,且過點(diǎn)M(2,-2)的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)α,β是兩個(gè)不重合的平面,a,b是兩條不同的直線,給出下列條件:
①α,β都平行于直線a,b;
②a,b是α內(nèi)的兩條直線,且a∥β,b∥β;
③a與b相交,且都在α,β外,a∥α,a∥β,b∥α,b∥β.
其中可判定α∥β的條件是②③.(填序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案