【題目】某高三理科班共有名同學(xué)參加某次考試,從中隨機(jī)挑出名同學(xué),他們的數(shù)學(xué)成績(jī)與物理成績(jī)如下表:
數(shù)學(xué)成績(jī) | |||||
物理成績(jī) |
(1)數(shù)據(jù)表明與之間有較強(qiáng)的線性關(guān)系,求于的線性回歸方程;
(2)本次考試中,規(guī)定數(shù)學(xué)成績(jī)達(dá)到分為優(yōu)秀,物理成績(jī)達(dá)到分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為和,且除去抽走的名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有人,請(qǐng)寫出列聯(lián)表,判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?
參考數(shù)據(jù):,;,;
【答案】(1);(2)在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)。
【解析】
(1)依據(jù)最小二乘法的步驟即可求出關(guān)于的線性回歸方程;(2)根據(jù)題意寫出列聯(lián)表,由公式計(jì)算出的觀測(cè)值,比較與6.635的大小,即可判斷是否有關(guān)。
(1)由題意可得,
所以,,
故關(guān)于的線性回歸方程是。
(2)由題意可知,該班數(shù)學(xué)優(yōu)秀人數(shù)及物理優(yōu)秀人數(shù)分別為30,36,抽出的5人中,數(shù)學(xué)優(yōu)秀但是物理不優(yōu)秀的共有1人,故全班數(shù)學(xué)優(yōu)秀但是物理不優(yōu)秀的共有6人,于是得到列聯(lián)表為:
物理優(yōu)秀 | 物理不優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | 24 | 6 | 30 |
數(shù)學(xué)不優(yōu)秀 | 12 | 18 | 30 |
合計(jì) | 36 | 24 | 36 |
于是的觀測(cè)值為,
因此,在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某種出口產(chǎn)品的關(guān)稅稅率,市場(chǎng)價(jià)格(單位:千元)與市場(chǎng)供應(yīng)量(單位:萬(wàn)件)之間近似滿足關(guān)系式:,其中、均為常數(shù).當(dāng)關(guān)稅稅率為時(shí),若市場(chǎng)價(jià)格為5千元,則市場(chǎng)供應(yīng)量約為1萬(wàn)件;當(dāng)關(guān)稅稅率為時(shí),若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.
(1)試確定、的值;
(2)市場(chǎng)需求量(單位:萬(wàn)件)與市場(chǎng)價(jià)格近似滿足關(guān)系式:.當(dāng)時(shí),市場(chǎng)價(jià)格稱為市場(chǎng)平衡價(jià)格.當(dāng)市場(chǎng)平衡價(jià)格不超過(guò)4千元時(shí),試確定關(guān)稅稅率的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱中,,側(cè)面底面,是的中點(diǎn),,.
(Ⅰ)求證:為直角三角形;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線:ρ(2cosθ-sinθ)=6.
(Ⅰ)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的、2倍后得到曲線C2,試寫出直線的直角坐標(biāo)方程和曲線C2的參數(shù)方程.
(Ⅱ)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了推廣電子支付,某公交公司推出支付寶和微信掃碼支付乘車優(yōu)惠活動(dòng),活動(dòng)期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,現(xiàn)用表示活動(dòng)推出第天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表1所示:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
6 | 12 | 23 | 34 | 65 | 106 | 195 |
表1
根據(jù)以上數(shù)據(jù)繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在活動(dòng)期內(nèi),與(,均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);
(2)根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù)建立關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第8天使用掃碼支付的人次;
(3)優(yōu)惠活動(dòng)結(jié)束后,車隊(duì)對(duì)乘客的支付方式進(jìn)行統(tǒng)計(jì),結(jié)果如下
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
比列 | 10% | 54% | 36% |
車隊(duì)為緩解周邊居民出行壓力,以90萬(wàn)元的單價(jià)購(gòu)進(jìn)了一批新車,根據(jù)以往的經(jīng)驗(yàn)可知每輛車每個(gè)月的運(yùn)營(yíng)成本約為0.978萬(wàn)元.已知該線路公交車票價(jià)為2元,使用現(xiàn)金支付的乘客無(wú)優(yōu)惠,使用乘車卡支付的乘客享受8折優(yōu)惠,掃碼支付的乘客隨機(jī)優(yōu)惠,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用掃碼支付的乘客中有的概率享受6折優(yōu)惠,有的概率享受7折優(yōu)惠,有的概率享受8折優(yōu)惠,有的概率享受9折優(yōu)惠.預(yù)計(jì)該車隊(duì)每輛車每個(gè)月有1.5萬(wàn)人次乘車,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,在不考慮其它因素的條件下,按照上述收費(fèi)標(biāo)準(zhǔn),假設(shè)這批車需要年才能開(kāi)始盈利,求的值.
參考數(shù)據(jù):
63 | 1.55 | 2561 | 50.40 | 3.55 |
其中,.
參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市準(zhǔn)備實(shí)施天然氣價(jià)格階梯制,現(xiàn)提前調(diào)查市民對(duì)天然氣價(jià)格階梯制的態(tài)度,隨機(jī)抽查了名市民,現(xiàn)將調(diào)查情況整理成了被調(diào)查者的頻率分布直方圖(如圖)和贊成者的頻數(shù)表如下:
年齡(歲) | ||||||
贊成人數(shù) |
(1)若從年齡在,的被調(diào)查者中各隨機(jī)選取人進(jìn)行調(diào)查,求所選取的人中至少有人對(duì)天然氣價(jià)格階梯制持贊成態(tài)度的概率;
(2)若從年齡在,的被調(diào)查者中各隨機(jī)選取人進(jìn)行調(diào)查,記選取的人中對(duì)天然氣價(jià)格實(shí)施階梯制持不贊成態(tài)度的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高二學(xué)生視力情況進(jìn)行調(diào)查,學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)年級(jí)名次在1~50名和951~1000名的學(xué)生進(jìn)行了調(diào)查,得到如下數(shù)據(jù):
年級(jí)名次 是否近視 | 1~50 | 951~1000 |
近視 | 41 | 32 |
不近視 | 9 | 18 |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)的概率不超過(guò)0.05的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?
(2)在(1)中調(diào)查的100名學(xué)生中,按照分層抽樣在不近視的學(xué)生中抽取了9人,進(jìn)一步調(diào)查他們良好的護(hù)眼習(xí)慣,并且在這9人中任取3人,記名次在1~50名的學(xué)生人數(shù)為,求的分布列和數(shù)學(xué)期望.
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的部分圖象如圖所示:
(I)求的解析式及對(duì)稱中心坐標(biāo);
(Ⅱ)將的圖象向右平移個(gè)單位,再將橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,最后將圖象向上平移1個(gè)單位,得到函數(shù)的圖象,求函數(shù)在上的單調(diào)區(qū)間及最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分) 已知橢圓經(jīng)過(guò)點(diǎn),離心率為,過(guò)點(diǎn)的直線與橢圓交于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com