5.已知O是邊長為1的正三角形ABC的中心,則($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{1}{6}$.

分析 根據(jù)三角形的重心的性質(zhì)及向量加法平行四邊形法則、向量數(shù)乘的幾何意義,根據(jù)條件進行向量數(shù)量積的運算即可求出

解答 解:根據(jù)重心的性質(zhì),$\overrightarrow{OA}$+$\overrightarrow{OB}$=$\frac{1}{3}$($\overrightarrow{CA}$+$\overrightarrow{CB}$),($\overrightarrow{OA}$+$\overrightarrow{OC}$)=$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{BC}$)=$\frac{1}{3}$($\overrightarrow{CA}$-$\overrightarrow{CB}$-$\overrightarrow{CB}$)=$\frac{1}{3}$($\overrightarrow{CA}$-2$\overrightarrow{CB}$),
又|$\overrightarrow{CA}$|=|$\overrightarrow{CB}$|=1,∠BCA=60°;
∴($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=$\frac{1}{9}$($\overrightarrow{CA}$+$\overrightarrow{CB}$)($\overrightarrow{CA}$-2$\overrightarrow{CB}$)=$\frac{1}{9}$(${\overrightarrow{CA}}^{2}$-$\overrightarrow{CA}•\overrightarrow{CB}$-2${\overrightarrow{CB}}^{2}$)=$\frac{1}{9}$(1-$\frac{1}{2}$-2)=-$\frac{1}{6}$,
故答案為:-$\frac{1}{6}$.

點評 考查三角形重心的概念及性質(zhì),等邊三角形的概念,向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,以及向量的數(shù)乘運算,向量數(shù)量積的運算及計算公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,在四棱錐E-ABCD中,底面ABCD為正方形,AE⊥平面CDE,已知AE=DE=2,F(xiàn)為線段DE的中點.
(Ⅰ)求證:BE∥平面ACF;
(Ⅱ)求平面BCF與平面BEF夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若當x∈[0,π]時,不等式sinx≤kx恒成立,則實數(shù)k的取值范圍是k≥1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,已知a=$\sqrt{6}$,c=2,A=60°,那么B等于( 。
A.75°B.75°或105°C.45°D.45°或135°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知直線ax+4y-2=0與直線2x-5y+b=0互相垂直且交于點(1,c),求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設橢圓$\frac{x^2}{m^2}$+$\frac{y^2}{n^2}$=1,雙曲線$\frac{x^2}{m^2}$-$\frac{y^2}{n^2}$=1,(其中m>n>0)的離心率分別為e1,e2,則( 。
A.e1•e2>1B.e1•e2<1
C.e1•e2=1D.e1•e2與1大小不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=sinx,f(x)的導函數(shù)是( 。
A.cosxB.-cosxC.sinxD.-sinx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(Ⅰ)當x=$\frac{π}{4}$時,求|a-b|的值;
(Ⅱ)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(Ⅲ)求方程f(x)=k,(0<k<2),在[-$\frac{π}{12}$,$\frac{23π}{12}$]內(nèi)的所有實數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=6ln x(x>0)和g(x)=ax2+8x-b(a,b為常數(shù))的圖象在x=3處有公共切線.
(1)求a的值;
(2)求函數(shù)F(x)=f(x)-g(x)的極大值和極小值;
(3)若關于x的方程f(x)=g(x)有且只有3個不同的實數(shù)解,求b的取值范圍.

查看答案和解析>>

同步練習冊答案