【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫(xiě)出一個(gè)滿(mǎn)足條件的m的值,并求此時(shí)方程的根.
【答案】
(1)
∵關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根,
∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,
解得:m>﹣ .
(2)
解:m=1,此時(shí)原方程為x2+3x=0,
即x(x+3)=0,
解得:x1=0,x2=﹣3.
【解析】(1)由方程有兩個(gè)不相等的實(shí)數(shù)根即可得出△>0,代入數(shù)據(jù)即可得出關(guān)于m的一元一次不等式,解不等式即可得出結(jié)論;(2)結(jié)合(1)結(jié)論,令m=1,將m=1代入原方程,利用因式分解法解方程即可得出結(jié)論.
【考點(diǎn)精析】本題主要考查了因式分解法和求根公式的相關(guān)知識(shí)點(diǎn),需要掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì);根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形,過(guò)作平面,再過(guò)作于點(diǎn),過(guò)作于點(diǎn).
(Ⅰ)求證: .
(Ⅱ)若平面交于點(diǎn),求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某公交公司1路車(chē)從起點(diǎn)站A站途經(jīng)B站和C站,最終到達(dá)終點(diǎn)站D站的格點(diǎn)站路線(xiàn)圖.(8×8的格點(diǎn)圖是由邊長(zhǎng)為1的小正方形組成)
(1)求1路車(chē)從A站到D站所走的路程(精確到0.1);
(2)在圖2、圖3和圖4的網(wǎng)格中各畫(huà)出一種從A站到D站的路線(xiàn)圖.(要求:①與圖1路線(xiàn)不同、路程相同;②途中必須經(jīng)過(guò)兩個(gè)格點(diǎn)站;③所畫(huà)路線(xiàn)圖不重復(fù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為與,且乙投球2次均未命中的概率為。
(1)求乙投球的命中率。
(2)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)討論和是函數(shù)的極大值還是極小值;
(2)過(guò)點(diǎn)作曲線(xiàn)的切線(xiàn),求此切線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5kg,乙材料1kg,用5個(gè)工時(shí);生產(chǎn)一件產(chǎn)品B需要甲材料0.5kg,乙材料0.3kg,用3個(gè)工時(shí).生產(chǎn)一件產(chǎn)品A的利潤(rùn)為2100元,生產(chǎn)一件產(chǎn)品B的利潤(rùn)為900元.該企業(yè)現(xiàn)有甲材料150kg,乙材料90kg,求在不超過(guò)600個(gè)工時(shí)的條件下,生產(chǎn)產(chǎn)品A和產(chǎn)品B的利潤(rùn)之和的最大值(元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列中,已知,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙和點(diǎn).過(guò)作⊙的兩條切線(xiàn),切點(diǎn)分別為且直線(xiàn)的方程為.
(1)求⊙的方程;
(2)設(shè)為⊙上任一點(diǎn),過(guò)點(diǎn)向⊙引切線(xiàn),切點(diǎn)為, 試探究:平面內(nèi)是否存在一定點(diǎn),使得為定值?若存在,請(qǐng)舉出一例,并指出相應(yīng)的定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com