已知函數(shù)
(1)當(dāng)時(shí),求不等式的解集; (2)若的解集包含,求的取值范圍.

(1) 
(2) 

解析試題分析:(1)當(dāng)時(shí), 
 
 
(2)原命題上恒成立
上恒成立
上恒成立
 
考點(diǎn):本題主要考查絕對(duì)值不等式的解法,絕對(duì)值不等式恒成立問題。
點(diǎn)評(píng):中檔題,絕對(duì)值不等式的解法,應(yīng)立足于“去絕對(duì)值符號(hào)”,一種思路是利用定義分類討論,一種思路是通過平方,另一種思路是不去絕對(duì)值符號(hào),利用幾何意義。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(I)當(dāng)時(shí),求的單調(diào)區(qū)間;
(II)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)),
(Ⅰ)若曲線在它們的交點(diǎn)處具有公共切線,求的值;
(Ⅱ)當(dāng)時(shí),求函數(shù)在區(qū)間上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

運(yùn)貨卡車以每小時(shí)千米的速度勻速行駛130千米(單位:千米/小時(shí)).假設(shè)汽油的價(jià)格是每升6元,而汽車每小時(shí)耗油升,司機(jī)的工資是每小時(shí)30元.
(1)求這次行車總費(fèi)用關(guān)于的表達(dá)式;
(2)當(dāng)為何值時(shí),這次行車的總費(fèi)用最低,并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時(shí),可使公司造船的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,公園有一塊邊長為2的等邊△ABC的邊角地,現(xiàn)修成草坪,圖中把草坪分成面積相等的兩部分,上,上.

(1)設(shè),求用表示的函數(shù)關(guān)系式;
(2)如果是灌溉水管,為節(jié)約成本,希望它最短,的位置應(yīng)在哪里?如果是參觀線路,則希望它最長,的位置又應(yīng)在哪里?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2013年,首都北京經(jīng)歷了59年來霧霾天氣最多的一個(gè)月。經(jīng)氣象局統(tǒng)計(jì),北京市從1月1日至1月30日這30天里有26天出現(xiàn)霧霾天氣!董h(huán)境空氣質(zhì)量指數(shù)(AQI)技術(shù)規(guī)定(試行)》將空氣質(zhì)量指數(shù)分為六級(jí):其中,中度污染(四級(jí)),指數(shù)為151—200;重度污染(五級(jí)),指數(shù)為201—300;嚴(yán)重污染(六級(jí)),指數(shù)大于300. 下面表1是該觀測點(diǎn)記錄的4天里,AQI指數(shù)與當(dāng)天的空氣水平可見度(千米)的情況,表2是某氣象觀測點(diǎn)記錄的北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)結(jié)果,
表1:AQI指數(shù)與當(dāng)天的空氣水平可見度(千米)情況

AQI指數(shù)




空氣可見度(千米)




表2:北京1月1日到1月30日AQI指數(shù)頻數(shù)統(tǒng)計(jì)
AQI指數(shù)





頻數(shù)
3
6
12
6
3
(Ⅰ)設(shè)變量,根據(jù)表1的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(Ⅱ)根據(jù)表2估計(jì)這30天AQI指數(shù)的平均值.
(用最小二乘法求線性回歸方程系數(shù)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本0.5萬元,此外每生產(chǎn)1百件這樣的產(chǎn)品,還需增加投入0.25萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為5百件,產(chǎn)品銷售數(shù)量為t(百件)時(shí),銷售所得的收入為()萬元。
(1)該公司這種產(chǎn)品的年生產(chǎn)量為百件,生產(chǎn)并銷售這種產(chǎn)品得到的利潤為當(dāng)年產(chǎn)量的函數(shù),求;
(2)當(dāng)該公司的年產(chǎn)量為多大時(shí)當(dāng)年所獲得的利潤最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
。
(1)求m的值;
(2)判斷上的單調(diào)性并加以證明;
(3)當(dāng)的值域是(1,+),求a的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案