已知數(shù)列
滿足
,則數(shù)列
的最小值是
解:因為利用遞推關(guān)系可知
,利用累加法得到
,然后利用比值結(jié)合函數(shù)得到最小值為26.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)數(shù)列{
n}滿足
1=
,
n+1=
n2+
1,
.
(Ⅰ)當(dāng)
∈(-∞,-2)時,求證:
M;
(Ⅱ)當(dāng)
∈(0,
]時,求證:
∈M;
(Ⅲ)當(dāng)
∈(
,+∞)時,判斷元素
與集合M的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
已知數(shù)列{a
n}、{b
n}分別是首項均為2的各項均為正數(shù)的等比數(shù)列和等差數(shù)列,且
(I) 求數(shù)列{a
n}、{b
n}的通項公式;
(II )求使
<0.001成立的最小的n值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在數(shù)列{
an}中,
a1=1,當(dāng)
n≥2時,
an,
Sn,
Sn-
成等比數(shù)列.
(1)求
a2,
a3,
a4,并推出
an的表達式;(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;
(3)求數(shù)列{
an}前n項的和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分14分)
已知等差數(shù)列
的前
項和為
,且
.
(I)求數(shù)列
的通項公式;
(II)若數(shù)列
滿足
,求數(shù)列
的前
項和.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)等差數(shù)列
的前n項和為
,若
,
,則當(dāng)
取最小值時,n等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知數(shù)列
為等差數(shù)列且
,則
的值為
查看答案和解析>>