設(shè)數(shù)列{an}為等差數(shù)列,前n項和為Sn,已知a2=2,S5=15.
(Ⅰ)求{an}的通項公式;
(Ⅱ)若bn=an•2n,求數(shù)列{bn}的前n項和Tn
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)a2=2,S5=15,列出方程,求出等差數(shù)列{an}的首項和公差,然后求出an即可;
(2)根據(jù)題意,首先求出數(shù)列{bn}的通項bn,然后根據(jù)等比數(shù)列的求和公式,求出此數(shù)列的前n項和Gn即可.
解答: 解:(1)∵
a2=2
S5=15

a1+d=2
5a1+
1
2
•5•4d=15

a1=1
d=1

∴an=1+(n-1)=n,
即an=n.
(2)∵bn=an•2n,an=n
∴bn=n•2n,
數(shù)列{bn}的前n項和Tn=1•21+2•22+3•23+…+n•2n,
∴2Tn=1•22+2•23+3•24+…+(n-1)•2n+n•2n+1,
Tn-2Tn=21+22+23+…+2n-n2n+1=2n+1-2-n2n+1,
∴Tn=(n-1)2n+1+2.
點評:本題主要考查了等差數(shù)列的通項公式,錯位相減法求數(shù)列的和的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)函數(shù)f(x)=ex-ln(x+1).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知0≤x1<x2.求證:ex2-x1>ln
e(x2+1)
x1+1

(Ⅲ)設(shè)g(x)=ex-
x
x+1
lnx-f(x),證明:對任意的正實數(shù)a,總能找到實數(shù)m(a),使g[m(a)]<a成立.注:e為自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題甲:函數(shù)f(x)=x2+(a-1)x+a2在實數(shù)集R上沒有零點;命題乙:函數(shù)f(x)=(2a2-a)x在R上是增函數(shù).若甲、乙中有且只有一個真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}滿足a1=1,an+1=
an
2an+1
(n∈N*).
(1)求證{
1
an
}
是等差數(shù)列;(要指出首項與公差);
(2)求數(shù)列{an}的通項公式;
(3)若Tn=a1a2+a2a3+…+anan+1,求證:Tn
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}是遞增數(shù)列,前n項和為Sn,且a1,a3,a9成等比數(shù)列,S5=a52
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=
n2+n+1
anan+1
,求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

近日我漁船編隊在釣魚島附近點A周圍海域作業(yè),在B處的海監(jiān)15船測得A在其南偏東45°方向上,測得漁政船310在其北偏東15°方向上,且與B的距離為4
3
海里的C處.某時刻,海監(jiān)15船發(fā)現(xiàn)日本船向在點A周圍海域作業(yè)的我漁船編隊靠近,上級指示漁政船310立刻全速前往點A周圍海域執(zhí)法,海監(jiān)15船原地監(jiān)測.漁政船310走到B正東方向D處時,測得距離B為4
2
海里.若漁政船以23海里/小時的速度航行,求其到達點A所需的時間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,
3
),
b
=(3,m).
(Ⅰ)若
a
b
,求|
b
|;   
(Ⅱ)若向量
a
b
的夾角為
π
6
,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}是首項為1,公比為2的等比數(shù)列,則a1+|a2|+a3+|a4|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在不等邊△ABC中,三個內(nèi)角∠A,∠B,∠C所對的邊分別為a,b,c,只有
cosA
cosB
=
b
a
,則角C的大小為
 

查看答案和解析>>

同步練習冊答案