【題目】已知如圖幾何體,正方形和矩形所在平面互相垂直,,的中點,

(Ⅰ)求證:平面;

(Ⅱ)求二面角的大小.

【答案】I)見解析;(Ⅱ)

【解析】

(Ⅰ)證明平面,利用線面平行的判定,只需證明平行于平面中以一條線即可,連接,連接,則的中點,根據(jù)的中點,可證;

(Ⅱ)以為原點,以,,軸建立空間直角坐標(biāo)系,證明法向量垂直,由此可求二面角的平面角的大。

(Ⅰ)證明:連接,連接,

的中點

的中點,

平面,平面平面

(Ⅱ)解:因為正方形和矩形所在平面互相垂直,所以平面,

為原點,以,,軸建立空間直角坐標(biāo)系,如圖取,1,,,0,,,1,,0,,,1,,

設(shè)平面的法向量為,,,

,,,1,

,不妨令,解得,1,;

同理平面的法向量為1,

二面角的大小為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,平面,,,,,分別是,的中點.

(1)求三棱錐的體積;

(2)若異面直線所成的角為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC在內(nèi)角AB、C的對邊分別為a,b,c,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)命題p:實數(shù)滿足不等式;

命題q:關(guān)于不等式對任意的恒成立.

1)若命題為真命題,求實數(shù)的取值范圍;

2)若“為假命題,為真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為坐標(biāo)原點,圓,定點,點是圓上一動點,線段的垂直平分線交圓的半徑于點,點的軌跡為.

(1)求曲線的方程;

(2)已知點是曲線上但不在坐標(biāo)軸上的任意一點,曲線軸的焦點分別為,直線分別與軸相交于兩點,請問線段長之積是否為定值?如果還請求出定值,如果不是請說明理由;

(3)在(2)的條件下,若點坐標(biāo)為(-1,0),設(shè)過點的直線相交于兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學(xué)期的高一年級學(xué)生開始實行.為了適應(yīng)新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學(xué)成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學(xué)成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學(xué)平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分?jǐn)?shù)在分及其以上的試卷中任取份分析學(xué)生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根、),稱為的特征根.

(1)討論函數(shù)的奇偶性,并說明理由;

(2)已知為給定實數(shù),求的表達(dá)式;

(3)把函數(shù)的最大值記作,最小值記作,研究函數(shù)的單調(diào)性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且有極大值.

(Ⅰ)求的解析式;

(Ⅱ)若的導(dǎo)函數(shù),不等式為正整數(shù))對任意正實數(shù)恒成立,求的最大值.(注:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為更好地落實農(nóng)民工工資保證金制度,南方某市勞動保障部門調(diào)查了年下半年該市名農(nóng)民工(其中技術(shù)工、非技術(shù)工各名)的月工資,得到這名農(nóng)民工月工資的中位數(shù)為百元(假設(shè)這名農(nóng)民工的月工資均在(百元)內(nèi))且月工資收入在(百元)內(nèi)的人數(shù)為,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖:

(Ⅰ)求,的值;

(Ⅱ)已知這名農(nóng)民工中月工資高于平均數(shù)的技術(shù)工有名,非技術(shù)工有名,則能否在犯錯誤的概率不超過的前提下認(rèn)為是不是技術(shù)工與月工資是否高于平均數(shù)有關(guān)系?

參考公式及數(shù)據(jù):,其中

查看答案和解析>>

同步練習(xí)冊答案