5.等差數(shù)列{an}的前n項(xiàng)和為Sn,且S10=100,S100=10,則S110=-110.

分析 利用等差數(shù)列的求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,∵S10=100,S100=10,
∴10a1+$\frac{10×9}{2}$d=100,100a1+$\frac{100×99}{2}$d=10,
解得a1=$\frac{1099}{100}$,d=$-\frac{11}{50}$.
則S110=110×$\frac{1099}{100}$-$\frac{11}{50}$×$\frac{110×109}{2}$=-110.
故答案為:-110.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式及其求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,m),若$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.-4B.4C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.用反證法證明命題“若abc=0,則a,b,c中至少有一個(gè)為0”時(shí),假設(shè)正確的是( 。
A.假設(shè)a,b,c都不為0B.假設(shè)a,b,c不都為0
C.假設(shè)a,b,c至多有一個(gè)為0D.假設(shè)a,b,c都為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號(hào),并按編號(hào)順序平均分為40組抽出的號(hào)碼為28,則第8組抽出的號(hào)碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于(  )
A.46B.45C.70D.69

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=ax+bx(a>0,b>0,a≠1,b≠1).
(Ⅰ)設(shè)$a=2,\;b=\frac{1}{2}$,求方程f(x)=2的根;
(Ⅱ)設(shè)$a=\frac{1}{3},\;b≥3$,函數(shù)g(x)=f(x)-2,已知b>3時(shí)存在x0∈(-1,0)使得g(x0)<0.若g(x)=0有且只有一個(gè)零點(diǎn),求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知Sn是等差數(shù)列{an}的前n項(xiàng)和,且${S_n}=-2{n^2}+15n$,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)n為何值時(shí),Sn取得最大值并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,${a_1}=1,S_n^2={a_n}({S_n}-\frac{1}{2})(n≥2)$
(1)求證數(shù)列$\left\{{\frac{1}{S_n}}\right\}$是等差數(shù)列,并求Sn
(2)設(shè)bn=$\frac{S_n}{2n+3},{T_n}={b_1}+{b_2}+{b_3}+…+{b_n}$,求Tn
(3)若對(duì)任意正整數(shù)n不等式(4n2-4n+10)Sn>(-1)n•a恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,所有棱長(zhǎng)都為2的正三棱柱BCD-B′C′D′,四邊形ABCD是菱形,其中E為BD的中點(diǎn).
(1)求證:C′E∥面AB′D′;
(2)求面AB'D'與面ABD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.過(guò)點(diǎn)P(2,1),以-3為斜率的直線方程為3x+y-7=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案