13.某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1~200編號,并按編號順序平均分為40組抽出的號碼為28,則第8組抽出的號碼應(yīng)是a;若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,那么a+b等于( 。
A.46B.45C.70D.69

分析 分別根據(jù)系統(tǒng)抽樣和分層抽樣的定義建立比例關(guān)系即可得到結(jié)論.

解答 解:若用系統(tǒng)抽樣,則樣本間隔為200÷40=5,
出的號碼為28,則28=5×5+3,則第一組抽出的號碼為3,則第第8組抽出的號碼應(yīng)是a=5×7=38,
若用分層抽樣方法,則50歲以下年齡段應(yīng)抽取b人,
則50歲以上的人數(shù)為20%×40=8,
則b=40-8=32,
則a+b=38+32=70,
故選:C.

點(diǎn)評 本題主要考查分層抽樣和系統(tǒng)抽樣的應(yīng)用,根據(jù)相應(yīng)的定義建立關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3-3ax+b.
(1)若曲線y=f(x)在點(diǎn)(2,f(x))處與直線y=8相切,求a,b的值.
(2)在(1)的條件下求函數(shù)f(x)的單調(diào)區(qū)間與極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.用反證法證明”若x,y都是正實數(shù),且x+y>2,則$\frac{1+x}{y}$<2或$\frac{1+y}{x}$<2中至少有一個成立“的第一步應(yīng)假設(shè)( 。
A.$\frac{1+x}{y}$≥2且$\frac{1+y}{x}$≥2B.$\frac{1+x}{y}$≥2或$\frac{1+y}{x}$≥2C.$\frac{1+x}{y}$≥2且$\frac{1+y}{x}$<2D.$\frac{1+x}{y}$≥2或$\frac{1+y}{x}$<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知i是虛數(shù)單位,且(1+2i)$\overline{z}$=3+i.
(1)求z;
(2)若z是關(guān)于x的方程x2+px+q=0的一個根,求實數(shù)p,q的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.(1)四個不同球放入編號為1,2,3,4的四個盒中,則恰有一個空盒的放法有多少種?
(2)設(shè)有編號為1,2,3,4,5的五個球和編號為1,2,3,4,5的盒子現(xiàn)將這5個球投入5個盒子要求每個盒子放一個球,并且恰好有兩個球的號碼與盒子號碼相同,問有多少種不同的方法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$f(x)={cos^2}x-2{cos^2}\frac{x}{2}$的最小值為( 。
A.1B.-1C.$\frac{5}{4}$D.$-\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.等差數(shù)列{an}的前n項和為Sn,且S10=100,S100=10,則S110=-110.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.(1)若不等式|x-m|<1成立的充分不必要條件為$\frac{1}{3}$<x<$\frac{1}{2}$,求實數(shù)m的取值范圍.
(2)已知a,b是正數(shù),且a+b=1,求證:(ax+by)(bx+ay)≥xy.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在平面直角坐標(biāo)系xoy中,已知點(diǎn)P(2,1)在橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$上且離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓C的方程;
(2)不經(jīng)過坐標(biāo)原點(diǎn)O的直線l與橢圓C交于A,B兩點(diǎn)(不與點(diǎn)P重合),且線段AB的中為D,直線OD的斜率為1,記直線PA,PB的斜率分別為k1,k2,求證:k1•k2為定值.

查看答案和解析>>

同步練習(xí)冊答案