【題目】已知函數(shù)是奇函數(shù).
(1)求的值并判斷的單調(diào)性;
(2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)由即可求得的值,再把函數(shù)的解析式分離常數(shù)即可判斷的單調(diào)性;(2)先利用函數(shù)的奇偶性和單調(diào)性把不等式轉(zhuǎn)化為在上恒成立,再利用換元法令將不等式進(jìn)一步轉(zhuǎn)化為關(guān)于的一元二次不等式恒成立問題,最后把一元二次不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題即可求出實(shí)數(shù)的取值范圍.
(1)易知該函數(shù)的定義域?yàn)?/span>,又因?yàn)楹瘮?shù)為奇函數(shù),所以,,此時(shí)在上單調(diào)遞減;(2)由函數(shù)為奇函數(shù),不等式可化為,又函數(shù)在上單調(diào)遞減,所以在上恒成立,令,不等式可化為在上恒成立,此時(shí)不成立,當(dāng)時(shí),不等式可轉(zhuǎn)化為,又在上單調(diào)遞減,所以當(dāng)時(shí),有最小值,所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在與時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間;
(2)若對,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義域?yàn)?/span>R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2x.
(1)求f(x)的解析式;
(2)若不等式f(t﹣2)+f(2t+1)>0成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列,且為該數(shù)列的前項(xiàng)和.
(1)寫出數(shù)列的通項(xiàng)公式;
(2)計(jì)算,猜想的表達(dá)式,并用數(shù)學(xué)歸納法證明;
(3)求數(shù)列的前項(xiàng)和的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校進(jìn)行課題實(shí)驗(yàn),乙班為實(shí)驗(yàn)班,甲班為對比班,甲乙兩班均有50人,一年后對兩班進(jìn)行測試,成績?nèi)缦卤?/span>
甲班成績 |
| ||||
人數(shù) | 4 | 20 | 15 | 10 | 1 |
乙班成績 | |||||
人數(shù) | 1 | 11 | 23 | 13 | 2 |
(1)現(xiàn)從甲班成績位于內(nèi)的試卷中抽取9份進(jìn)行試卷分析,請問用什么抽樣方法更合理,并寫出最后的抽樣結(jié)果
(2)完成下列列聯(lián)表,并判斷有多大把握認(rèn)為這兩個班在這次測試中成績的差異與實(shí)施課題實(shí)驗(yàn)有關(guān)。
成績小于100 | 成績不小于100 | 合計(jì) | |
甲班 | 50 | ||
乙班 | 50 | ||
合計(jì) | 36 | 64 | 100 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當(dāng)x∈(0,+∞)時(shí),f(x)=2x.
(1)求f(log2)的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過的包裹收費(fèi)元;重量超過的包裹,除收費(fèi)元之外,超過的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺工作人員的工資和公司利潤,剩余的用作其他費(fèi)用.目前前臺有工作人員人,每人每天攬件不超過件,工資元.公司正在考慮是否將前臺工作人員裁減人,試計(jì)算裁員前后公司每日利潤的數(shù)學(xué)期望,并判斷裁員是否對提高公司利潤更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某中學(xué)甲、乙兩班各隨機(jī)抽取 名同學(xué),測量他們的身高(單位: ),所得數(shù)據(jù)用莖葉圖表示如下,由此可估計(jì)甲、乙兩班同學(xué)的身高情況,則下列結(jié)論正確的是( )
A. 甲班同學(xué)身高的方差較大 B. 甲班同學(xué)身高的平均值較大
C. 甲班同學(xué)身高的中位數(shù)較大 D. 甲班同學(xué)身高在 以上的人數(shù)較多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com