【題目】為了解本學(xué)期學(xué)生參加公益勞動(dòng)的情況,某校從初高中學(xué)生中抽取100名學(xué)生,收集了他們參加公益勞動(dòng)時(shí)間(單位:小時(shí))的數(shù)據(jù),繪制圖表的一部分如表.
(1)從男生中隨機(jī)抽取一人,抽到的男生參加公益勞動(dòng)時(shí)間在的概率:
(2)從參加公益勞動(dòng)時(shí)間的學(xué)生中抽取3人進(jìn)行面談,記為抽到高中的人數(shù),求的分布列;
(3)當(dāng)時(shí),高中生和初中生相比,那學(xué)段學(xué)生平均參加公益勞動(dòng)時(shí)間較長(zhǎng).(直接寫(xiě)出結(jié)果)
【答案】(1)(2)詳見(jiàn)解析(3)初中生平均參加公益勞動(dòng)時(shí)間較長(zhǎng)
【解析】
(1)由圖表直接利用隨機(jī)事件的概率公式求解;
(2)X的所有可能取值為0,1,2,3.由古典概型概率公式求概率,則分布列可求;
(3)由圖表直接判斷結(jié)果.
(1)100名學(xué)生中共有男生48名,
其中共有20人參加公益勞動(dòng)時(shí)間在,
設(shè)男生中隨機(jī)抽取一人,抽到的男生參加公益勞動(dòng)時(shí)間在的事件為,
那么;
(2)的所有可能取值為0,1,2,3.
∴;;
;.
∴隨機(jī)變量的分布列為:
(3)由圖表可知,初中生平均參加公益勞動(dòng)時(shí)間較長(zhǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:()的左焦點(diǎn)為,是上一點(diǎn),且與軸垂直,,分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且,且的面積是,其中是坐標(biāo)原點(diǎn).
(1)求橢圓的方程.
(2)若過(guò)點(diǎn)的直線,互相垂直,且分別與橢圓交于點(diǎn),,,四點(diǎn),求四邊形的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F2,過(guò)點(diǎn)F1的直線與C交于A,B兩點(diǎn).△ABF2的周長(zhǎng)為,且橢圓的離心率為.
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PB與y=2分別交于點(diǎn)M,N,當(dāng)|MN|最小時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,等腰梯形ABCD中,,,,O為BE中點(diǎn),F為BC中點(diǎn).將沿BE折起到的位置,如圖2.
(1)證明:平面;
(2)若平面平面BCDE,求點(diǎn)F到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司為評(píng)估兩套促銷(xiāo)活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元件),在某地區(qū)部分營(yíng)銷(xiāo)網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷(xiāo)活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷(xiāo)售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷(xiāo)活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷(xiāo)活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷(xiāo)售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)(單位:元/件,整數(shù))和銷(xiāo)量(單位:件)如下表所示:
售價(jià) | 33 | 35 | 37 | 39 | 41 | 43 | 45 | 47 |
銷(xiāo)量 | 840 | 800 | 740 | 695 | 640 | 580 | 525 | 460 |
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù),并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)定為多少時(shí)?利潤(rùn)可以達(dá)到最大.
52446.95 | 13142 | 122.89 | |
124650 |
(附:相關(guān)指數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棉花的優(yōu)質(zhì)率是以其纖維長(zhǎng)度來(lái)街量的,纖維越長(zhǎng)的棉花晶質(zhì)越高.棉花的品質(zhì)分類(lèi)標(biāo)準(zhǔn)為:纖維長(zhǎng)度小于等于的為粗絨棉,纖維長(zhǎng)度在的為細(xì)絨棉,纖維長(zhǎng)度大于的為長(zhǎng)絨棉,其中纖維長(zhǎng)度在以上的棉花又名“軍海1號(hào)”.某采購(gòu)商從新疆某一棉花基地抽測(cè)了根棉花的纖維長(zhǎng)度,得到數(shù)據(jù)如下圖頻率分布表所示:
纖維長(zhǎng)度 | ||||
根數(shù) |
(1)若將頻率作為概率, 根據(jù)以上數(shù)據(jù),能否認(rèn)為該基地的這批棉花符合“長(zhǎng)絨棉占全部棉花的以上”的要求?
(2)用樣本估計(jì)總體, 若這批榨花共有,基地提出了兩種銷(xiāo)售方案給采購(gòu)商參考.方案一:不分等級(jí)賣(mài)出,每千克按元計(jì)算,方案二:對(duì)棉花先分等級(jí)再銷(xiāo)售,分級(jí)后不同等級(jí)的棉花售價(jià)如下表:
纖維長(zhǎng)度 | ||||
售價(jià) |
從來(lái)購(gòu)商的角度,請(qǐng)你幫他決策一下該用哪個(gè)方案.
(3)用分層抽樣的方法從長(zhǎng)絨棉中抽取6根棉花,再?gòu)拇?/span>根棉花中抽取兩根進(jìn)行檢驗(yàn).求抽到的兩根棉花只有一根是“軍海1號(hào)”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知拋物線的焦點(diǎn)為,為上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)的直線交于另一點(diǎn),交軸的正半軸于點(diǎn),且有.當(dāng)點(diǎn)的橫坐標(biāo)為時(shí),為正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直線,且和有且只有一個(gè)公共點(diǎn),
(ⅰ)證明直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo);
(ⅱ)的面積是否存在最小值?若存在,請(qǐng)求出最小值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com