分析 (1)由($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow$-$\overrightarrow{a}$),可得($\overrightarrow{a}$+k$\overrightarrow{c}$)•(2$\overrightarrow$-$\overrightarrow{a}$)=0,解得k.
(2)設$\overrightarrowsyq4skw$=(x,y),由$\overrightarrowmse4kyk$∥$\overrightarrow{c}$,且|$\overrightarrowygqco4a$|=$\sqrt{34}$,可得$\left\{\begin{array}{l}{x-4y=0}\\{{x}^{2}+{y}^{2}=34}\end{array}\right.$,解出即可得出.
解答 解:(1)$\overrightarrow{a}$+k$\overrightarrow{c}$=(3+4k,2+k),
2$\overrightarrow$-$\overrightarrow{a}$=(-5,2),∵($\overrightarrow{a}$+k$\overrightarrow{c}$)⊥(2$\overrightarrow$-$\overrightarrow{a}$),∴($\overrightarrow{a}$+k$\overrightarrow{c}$)•(2$\overrightarrow$-$\overrightarrow{a}$)=(3+4k)×(-5)+(2+k)×2=0,解得k=-$\frac{11}{18}$.
(2)設$\overrightarrowqamwics$=(x,y),∵$\overrightarrowqckukyg$∥$\overrightarrow{c}$,且|$\overrightarrowmseseqc$|=$\sqrt{34}$,∴$\left\{\begin{array}{l}{x-4y=0}\\{{x}^{2}+{y}^{2}=34}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4\sqrt{2}}\\{y=\sqrt{2}}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-4\sqrt{2}}\\{y=-\sqrt{2}}\end{array}\right.$,
∴向量$\overrightarrowais4ygw$的坐標為$(4\sqrt{2},\sqrt{2})$,或$(-4\sqrt{2},-\sqrt{2})$.
點評 本題考查了向量坐標運算性質(zhì)、向量共線定理、向量相等、向量垂直與數(shù)量積的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 9或10 | D. | 10或11 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com