f(x)=
x+b
x2+4
(b為常數(shù))的最大值為
1
2
,求函數(shù)的最小值.
考點:函數(shù)的最值及其幾何意義
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:令y=f(x)=
x+b
x2+4
,則x2y-x+4y-b=0;利用判別式法知
1
2
是△=1-4y(4y-b)=0的解,從而求最小值.
解答: 解:令y=f(x)=
x+b
x2+4

則x2y-x+4y-b=0;
故令△=1-4y(4y-b)=0知,
1
2
是△=1-4y(4y-b)=0的解,
即1-2(2-b)=0;
解得,b=
3
2

故-
1
8
≤y≤
1
2
;
故函數(shù)的最小值為-
1
8
點評:本題考查了函數(shù)的值域的求法及最值的求法與應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得投資收益的范圍是[10,100](單位:萬元).現(xiàn)準(zhǔn)備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過5萬元,同時獎金不超過投資收益的20%.
(Ⅰ)若建立函數(shù)模型y=f(x)制定獎勵方案,請你根據(jù)題意,寫出獎勵模型函數(shù)應(yīng)滿足的條件;
(Ⅱ)現(xiàn)有兩個獎勵函數(shù)模型:(1)y=
1
20
x+1;(2)y=log2x-2.試分析這兩個函數(shù)模型是否符合公司要求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在不等式組
0≤x≤2
0≤y≤2
,所表示的平面區(qū)域內(nèi)任取一點P,若點P的坐標(biāo)(x,y)滿足y≥kx的概率為
3
4
,則實數(shù)k=( 。
A、4
B、2
C、
2
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3x+
3

(1)若a+b=1,求證:f(a)+f(b)為定值;
(2)設(shè)S=f(-5)+f(-4)+…+f(0)+…+f(5)+f(6),求S的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
、
b
為平面向量,若
a
+
b
a
的夾角為
π
3
,
a
+
b
b
的夾角為
π
4
,則
|
a
|
|
b
|
=( 。
A、
3
3
B、
6
4
C、
5
3
D、
6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(1,2),
b
=(1,1),且
a
與a+λ
b
的夾角為銳角,則實數(shù)λ滿足( 。
A、λ<-
5
3
B、λ>-
5
3
C、λ>-
5
3
且λ≠0
D、λ<-
5
3
且λ≠-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2-ax+2的兩個零點分別在區(qū)間(0,1)和(1,3)內(nèi),則a的取值范圍( 。
A、(2,
11
3
B、[2,3)
C、(3,
11
3
D、(
11
3
,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足下面關(guān)系:(1)f(x+
π
2
)=f(x-
π
2
);(2)當(dāng)x∈(0,π]時,f(x)=-cosx,
則下列說法中,正確說法的序號是
 
(把你認(rèn)為正確的序號都填上)
①函數(shù)f(x)是周期函數(shù);
②函數(shù)f(x)是奇函數(shù);
③函數(shù)f(x)的圖象關(guān)于y軸對稱;
④方程f(x)=lg|x|解的個數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+2,則f(1)的值為(  )
A、2B、3C、4D、6

查看答案和解析>>

同步練習(xí)冊答案