14.已知數(shù)列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,那么數(shù)列{bn}的前n項和Sn為$\frac{4n}{n+1}$.

分析 確定bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{4}{n(n+1)}$=4($\frac{1}{n}$-$\frac{1}{n+1}$),疊加可得結論.

解答 解:an=$\frac{1+2+3+…+n}{n+1}$=$\frac{n}{2}$,∴bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{4}{n(n+1)}$=4($\frac{1}{n}$-$\frac{1}{n+1}$),
∴Sn=4(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$)=$\frac{4n}{n+1}$.
故答案為:$\frac{4n}{n+1}$.

點評 本題考查數(shù)列的通項與求和,考查裂項方法的運用,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.下列4個命題:
①函數(shù)$y=\frac{1}{x}$在定義域上是減函數(shù)
②命題“若x2-x=0,則x=1”的逆否命題為“若x≠1,則x2-x≠0”;
③若“¬p或q”是假命題,則“p且¬q”是真命題;
④?a,b∈(0,+∞),當a+b=1時,$\frac{1}{a}+\frac{1}=3$;
其中正確命題的個數(shù)是(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設a∈R,則“a=2或a=-2”是“直線l1:x+ay+3=0與直線l2:ax+4y+6=0平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.下列命題中錯誤的是( 。
A.若命題p為真命題,命題q為假命題,則命題“p∨(¬q)”為真命題
B.命題“若a+b≠7,則a≠2或b≠5”為真命題
C.命題p:?x>0,sinx>2x-1,則¬p為?x>0,sinx≤2x-1
D.命題“若x2-x=0,則x=0或x=1”的否命題為“若x2-x=0,則x≠0且x≠1”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知∠ABC=90°,PA⊥平面ABC,若PA=AB=BC=1cm,則四面體P-ABC的外接球(頂點都在球面上)的表面積為3πcm2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.若函數(shù)$f(x)=\left\{\begin{array}{l}{log_2}x,({x>1})\\ f({x+5}),({x≤1})\end{array}\right.$,則f(-2016)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.在直角坐標系xOy中,圓C的方程為(x-2)2+y2=9.
(1)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,求C的極坐標方程.
(2)直線L的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù)),L交C于A、B兩點,且$|{AB}|=2\sqrt{7}$,求L的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設變量x,y滿足約束條件$\left\{\begin{array}{l}x≥0\\ x+3y≥4\\ 3x+y≤4\end{array}\right.$,則目標函數(shù)z=x+2y的最小值為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.拋物線y2=2px(p>0)的焦點為F,弦AB過F點且傾斜角為60°,|AF|>|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$的值為( 。
A.2B.3C.4D.1.5

查看答案和解析>>

同步練習冊答案