13.已知等比數(shù)列{an}中,a3=2,a4a6=16,則$\frac{{{a_{10}}-{a_{12}}}}{{{a_6}-{a_8}}}$=4.

分析 由等比數(shù)列的通項(xiàng)公式列出方程組,能求出首項(xiàng)和公比的平方,由此能求出$\frac{{{a_{10}}-{a_{12}}}}{{{a_6}-{a_8}}}$的值.

解答 解:∵等比數(shù)列{an}中,a3=2,a4a6=16,
∴$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=2}\\{{a}_{1}{q}^{3}•{a}_{1}{q}^{5}=16}\end{array}\right.$,
解得${a}_{1}=1,{q}^{2}=2$,
∴$\frac{{{a_{10}}-{a_{12}}}}{{{a_6}-{a_8}}}$=$\frac{{a}_{1}{q}^{9}-{a}_{1}{q}^{11}}{{a}_{1}{q}^{5}-{a}_{1}{q}^{7}}$=$\frac{{q}^{4}-{q}^{6}}{1-{q}^{2}}$=$\frac{{2}^{2}-{2}^{3}}{1-2}$=4.
故答案為:4.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的通項(xiàng)公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,Sn=c-2n-1,則c=( 。
A.2B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知角α∈($\frac{π}{2},\frac{3π}{2}$),且tanα=-$\frac{12}{5}$,則cos(2π-α)=$-\frac{5}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知數(shù)列{an}滿足:a1=-1,$\frac{{{a_{n+1}}}}{a_n}=\frac{1}{2}$,則數(shù)列{an}是( 。
A.遞增數(shù)列B.遞減數(shù)列C.擺動(dòng)數(shù)列D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求由曲線y=x2與y=2-x2所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.曲線的參數(shù)方程為$\left\{\begin{array}{l}{x=3{t}^{2}+2}\\{y={t}^{2}-1}\end{array}\right.$(t是參數(shù)),則曲線是( 。
A.線段B.直線C.D.射線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為ρ(sinθ+cosθ)=1.
(1)求直線l的直角坐標(biāo)方程;
(2)求直線l被曲線C:$\left\{\begin{array}{l}x=2+\sqrt{5}cosα\\ y=1+\sqrt{5}sinα\end{array}\right.$(α為參數(shù))所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:
價(jià)格x(元/kg)1015202530
日需求量y(kg)1110865
(Ⅰ)求y關(guān)于x的線性回歸方程;
(Ⅱ)當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測值為多少?
線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中系數(shù)計(jì)算公式:
$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(α)=$\frac{sin(π+α)sin(α+\frac{π}{2})}{cos(α-\frac{π}{2})}$.
(1)化簡f(α);
(2)若α是第三象限角,且cos(α+$\frac{π}{2}$)=$\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案