【題目】如圖,在四棱錐P﹣ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn). (Ⅰ)求證:PB⊥DM;
(Ⅱ)求CD與平面ADMN所成的角的正弦值.

【答案】解:(Ⅰ)解法1:∵N是PB的中點(diǎn),PA=AB,∴AN⊥PB. ∵PA⊥平面ABCD,所以AD⊥PA.
又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB.
又AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM
解法2:如圖,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)﹣xyz,設(shè)BC=1,
可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0), ,D(0,2,0).
因?yàn)? ,所以PB⊥DM.

(Ⅱ)解法1:取AD中點(diǎn)Q,連接BQ和NQ,則BQ∥DC,又PB⊥平面ADMN,∴CD與平面ADMN所成的角為∠BQN.
設(shè)BC=1,在Rt△BQN中,則 , ,故
所以CD與平面ADMN所成的角的正弦值為
解法2:因?yàn)?
所以 PB⊥AD,又PB⊥DM,所以PB⊥平面ADMN,
因此 的余角即是CD與平面ADMN所成的角.
因?yàn)?
所以CD與平面ADMN所成的角的正弦值為
【解析】(Ⅰ)解法1 先由AD⊥PA.AD⊥AB,證出AD⊥平面PAB得出AD⊥PB.又N是PB的中點(diǎn),PA=AB,得出AN⊥PB.證出PB⊥平面ADMN后,即可證出PB⊥DM. 解法2:如圖,以A為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系A(chǔ)﹣xyz,設(shè)BC=1,通過證明 證出PB⊥DM (Ⅱ)解法1:取AD中點(diǎn)Q,連接BQ和NQ,則BQ∥DC,又PB⊥平面ADMN,所以CD與平面ADMN所成的角為∠BQN.在Rt△BQN中求解即可. 解法2,通過 PB⊥平面ADMN,可知 是平面ADMN 的一個(gè)法向量, 的余角即是CD與平面ADMN所成的角.
【考點(diǎn)精析】本題主要考查了空間中直線與直線之間的位置關(guān)系和直線與平面垂直的判定的相關(guān)知識點(diǎn),需要掌握相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);平行直線:同一平面內(nèi),沒有公共點(diǎn);異面直線: 不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn);一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為 ,且過點(diǎn)D(2,0).
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn) ,若P是橢圓上的動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有三個(gè)房間需要粉刷,粉刷方案要求:每個(gè)房間只用一種顏色,且三個(gè)房間顏色各不相同.已知三個(gè)房間的粉刷面積(單位:m2)分別為x,y,z,,且xyz,三種顏色涂料的粉刷費(fèi)用(單位:元/m2)分別為a,b,c,且abc,在不同的方案中,最低的總費(fèi)用(單位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=loga|x+1|(a>0且a≠1),當(dāng)x∈(0,1)時(shí),恒有f(x)<0成立,則函數(shù)g(x)=loga(﹣ x2+ax)的單調(diào)遞減區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F1 , F2分別為橢圓 +y2=1的焦點(diǎn),點(diǎn)A,B在橢圓上,若 =5 ;則點(diǎn)A的坐標(biāo)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到函數(shù) ,x∈R的圖象,只需把函數(shù)y=2sinx,x∈R的圖象上所有的點(diǎn)(
A.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍縱坐標(biāo)不變)
B.向右平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)縮短到原來的 倍(縱坐標(biāo)不變)
C.向左平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)
D.向右平移 個(gè)單位長度,再把所得各點(diǎn)的橫坐標(biāo)伸長到原來的3倍(縱坐標(biāo)不變)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)設(shè)bn=an+1﹣an , 證明{bn}是等差數(shù)列;
(Ⅱ)求{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)棱錐的三視圖如圖,則該棱錐的全面積(單位:cm2)為(
A.48+12
B.48+24
C.36+12
D.36+24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi),動(dòng)點(diǎn)P到定點(diǎn)F(﹣1,0)的距離與P到定直線x=﹣4的距離之比為
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)設(shè)點(diǎn)A、B是軌跡C上兩個(gè)動(dòng)點(diǎn),直線OA、OB與軌跡C的另一交點(diǎn)分別為A1、B1 , 且直線OA、OB的斜率之積等于- ,問四邊形ABA1B1的面積S是否為定值?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案