已知正四面體ABCD的棱長(zhǎng)為2,所有與它的四個(gè)頂點(diǎn)距離相等的平面截這個(gè)四面體所得截面的面積之和是
( 。
A、3+
3
B、4
C、3
D、
3
考點(diǎn):棱柱、棱錐、棱臺(tái)的側(cè)面積和表面積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:根據(jù)題意,到正四面體ABCD四個(gè)頂點(diǎn)距離相等的截面分為兩類:一類是由同一頂點(diǎn)出發(fā)的三條棱的中點(diǎn)構(gòu)成的三角形截面,這樣的截面有4個(gè);另一類是與一組相對(duì)的棱平行,且經(jīng)過(guò)其它棱的中點(diǎn)的四邊形截面,這樣的截面有3個(gè).因此作出示意圖,其中E、F、G、H、I是各條棱的中點(diǎn),根據(jù)題中數(shù)據(jù)分別算出△EFG與四邊形EGHI的面積,從而可得所有滿足條件的截面面積之和.
解答: 解:設(shè)E、F、G分別為AB、AC、AD的中點(diǎn),連結(jié)EF、FG、GE,
則△EFG是三棱錐A-BCD的中截面,
可得平面EFG∥平面BCD,點(diǎn)A到平面EFG的距離等于平面EFG與平面BCD之間的距離,
∴A、B、C、D到平面EFG的距離相等,即平面EFG是到四面體ABCD四個(gè)頂點(diǎn)距離相等的一個(gè)平面.
正四面體ABCD中,象△EFG這樣的三角形截面共有4個(gè).
∵正四面體ABCD的棱長(zhǎng)為2,可得EF=FG=GE=1,
∴△EFG是邊長(zhǎng)為1的正三角形,可得S△EFG=
1
2
EF•FG•sin60°=
3
4

取CD、BC的中點(diǎn)H、I,連結(jié)GH、HI、IE,
∵EI、GH分別是△ABC、△ADC的中位線,
EI
.
1
2
AC
,GH
.
1
2
AC
,得EI
.
GH
,可得四邊形EGHI為平行四邊形,
又∵AC=BD且AC⊥BD,EI
.
1
2
AC
,HI
.
1
2
BD
,
∴EI=HI且EI⊥HI,可得四邊形EGHI為正方形,其邊長(zhǎng)為
1
2
AC
=1,由此可得正方形EGHI的面積SEGHI=1.
∵BC的中點(diǎn)I在平面EGHI內(nèi),∴B、C兩點(diǎn)到平面EGHI的距離相等.
同理可得D、C兩點(diǎn)到平面EGHI的距離相等,且A、B兩點(diǎn)到平面EGHI的距離相等.
∴A、B、C、D到平面EGHI的距離相等,可得平面EGHI是到四面體ABCD四個(gè)頂點(diǎn)距離相等的一個(gè)平面.
正四面體ABCD中,象四邊形EGHI這樣的正方形截面共有3個(gè).
因此,所有滿足條件的正四面體的截面面積之和等于4S△EFG+3SEGHI=4×
3
4
+3×1=3+
3

故選:A
點(diǎn)評(píng):本題給出棱長(zhǎng)為2的正四面體,求到它的各個(gè)頂點(diǎn)等距離的所求截面之和.著重考查了正四面體的性質(zhì)、點(diǎn)到平面距離的定義、三角形面積與四邊形形面積的求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
3x-y-2≤0
x-y≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為4,則a+b的值為( 。
A、4
B、2
C、
1
4
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C:x2+y2+Dx+Ey+3=0關(guān)于直線x+y-1=0對(duì)稱,圓心C在第四象限,半徑為
2

(Ⅰ)求圓C的方程;
(Ⅱ)是否存在直線l與圓C相切,且在x軸上的截距是y軸上的截距的2倍?若存在,求直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用一張矩形的紙片分別圍成兩個(gè)不同的圓柱形紙筒Ⅰ、Ⅱ,紙筒Ⅰ的側(cè)面積為24π,紙筒Ⅱ的底面半徑為3,則紙筒的Ⅱ的容積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

|x+2|-|x-1|<a的解集為非空集合,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正視圖、側(cè)視圖、俯視圖都是三角形的幾何體一定是( 。
A、圓錐B、棱柱
C、三棱錐D、四棱錐

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C1的極坐標(biāo)方程為P(2cosθ+5sinθ)-4=0;曲線C2的參數(shù)方程為
x=2cosθ
y=2sinθ
(θ為參數(shù)),
求(1)曲線C1和曲線C2的普通方程
(2)曲線C1和曲線C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
|2x-1|(x<2)
3
x-1
(x≥2)
,若方程f(x)-a=0有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)直線x-y+3=0與圓(x-1)2+(y-2)2=4相交于A、B兩點(diǎn),則弦AB的長(zhǎng)為( 。
A、2
2
B、
2
C、2
D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案