已知Sn是等比數(shù)列{an}的前n項和,S3,S9,S6成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的公比q;
(Ⅱ)證明:ak,ak+6,ak+3(k∈N*)成等差數(shù)列.
考點:等差關系的確定,等比數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)根據(jù)等比數(shù)列的通項公式,建立條件關系,即可得到結(jié)論.
(Ⅱ)求出ak,ak+6,ak+3(k∈N*)的通項公式,利用等差數(shù)列的定義進行證明即可.
解答: 解:(Ⅰ)由S3,S9,S6成等差數(shù)列,可得2 S9=S3+S6
當q=1時,即得18a1=3a1+6a1,解得a1=0,不成立.…(3分)
當q≠1時,即得
2a1(1-q9)
1-q
=
a1(1-q3)
1-q
+
a1(1-q6)
1-q
,
整理得:2q6-q3-1=0,即2(q32-q3-1=0,
解得:q=1(舍去),或q=-
34
2
. …(7分)
(Ⅱ)證明:由(Ⅰ)知q3+1=2q6,
ak+ak+3=a1qk-1+a1qk+2=a1qk-1(1+q3)=a1qk-1•2q6=2a1qk+5
2ak+6=2a1qk+5,
∴ak+ak+3=2ak+6,即ak,ak+6,ak+3(k∈N*)成等差數(shù)列.…(12分)
點評:本題主要考查等差數(shù)列和等比數(shù)列的通項公式的應用,考查學生的計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

某中學高三年級從甲、乙兩個班級各選出8名學生參加數(shù)學競賽,他們?nèi)〉玫某煽儯M分100分)的莖葉圖如圖,其中甲班學生成績的平均分是86,乙班學生成績的中位數(shù)是83,則x+y的值為( 。
A、9B、10C、11D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形OABC的頂點O在坐標原點,其中點A(-3,4),AB邊與y軸交與點D.
(1)求直線AB解析式;
(2)求△AOD的面積及其外接圓的面積;
(3)問△AOD的外接圓與BC所在的直線是否相切?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某池塘養(yǎng)殖著鯉魚和鯽魚,為了估計這兩種魚的數(shù)量,養(yǎng)殖者從池塘中捕出兩種魚各1000只,給每只魚做上不影響其存活的標記,然后放回池塘,待完全混合后,再每次從池塘中隨機的捕出1000只魚,記錄下其中有記號的魚的數(shù)目,立即放回池塘中.這樣的記錄做了10次,并將記錄獲取的數(shù)據(jù)做成以下的莖葉圖(圖1).

(Ⅰ)根據(jù)莖葉圖計算有記號的鯉魚和鯽魚數(shù)目的平均數(shù),并估計池塘中的鯉魚和鯽魚的數(shù)量;
(Ⅱ)為了估計池塘中魚的總重量,現(xiàn)從中按照(Ⅰ)的比例對100條魚進行稱重,據(jù)稱重魚的重量介于(0,4.5](單位:千克)之間,將測量結(jié)果按如下方式分成九組:第一組[0,0.5)、第二組[0.5,1);…,第九組[4,4.5).圖2是按上述分組方法得到的頻率分布直方圖的一部分.
①估計池塘中魚的重量在3千克以上(含3千克)的條數(shù);
②若第二組、第三組、第四組魚的條數(shù)依次成公差為7的等差數(shù)列,請將頻率分布直方圖補充完整;
③在②的條件下估計池塘中魚的重量的眾數(shù)、中位數(shù)及估計池塘中魚的總重量;
(Ⅲ)假設隨機地從池塘逐只有放回的捕出5只魚中出現(xiàn)鯉魚的次數(shù)為ξ,求ξ的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解方程:
(1)3x-5x-2=3x-4-5x-3;
(2)logx(9x2)•log32x=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的焦點F1(-1,0),F(xiàn)2(1,0)是雙曲線C2的頂點,且橢圓C1與雙曲線C2的一個交點為M(
2
3
3
,
3
3
).
(1)求橢圓C1及雙曲線C2的標準方程;
(2)若點P是雙曲線右支上的動點,點Q是y軸上的動點,且滿足F1P⊥F1Q,判斷直線PQ是否過定點,若過定點,求出定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:“對?x∈R,x2-2x+m≥0恒成立”,命題q:“方程
x2
m-4
+
y2
6-m
=1表示雙曲線”.
(1)若p為假命題,求實數(shù)m的取值范圍;
(2)若p∧q是假命題,p∨q是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx+mx,其中m為常數(shù).
(Ⅰ)當m=-1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在區(qū)間(0,e]上的最大值為-3,求m的值;
(Ⅲ)令g(x)=
f(x)+2
x
-f′(x),若x≥1時,有不等式g(x)≥
k
x+1
恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,若a=5,b=4,cosA=cos2B,則c的值是
 

查看答案和解析>>

同步練習冊答案