10.已知集合A={x|a-1<x<2a+1},B={x|x2-5x<0},若a=-2,A∩B=∅;若A⊆B,則實數(shù)a的取值范圍為1≤a≤3或a≤-2.

分析 求得A為空集,即可得到A∩B;若A⊆B,則分A=∅,A≠∅,得到不等式組,解出即可.

解答 解:a=-2,集合A={x|a-1<x<2a+1}={x|-3<x<-3}=∅,
則A∩B=∅;
B={x|x2-5x<0}={x|0<x<5},
若A⊆B,則A=∅,即a-1≥2a+1,解得a≤-2;
A≠∅,則0≤a-1<2a+1≤5,
解得1≤a≤3.
則實數(shù)a的取值范圍為1≤a≤3或a≤-2.
管委:∅,1≤a≤3或a≤-2.

點評 本題考查集合的交集運算和包含關(guān)系,考查分類討論思想方法,以及運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.棱長為1的正方體ABCD-A1B1C1D1中,點P在線段BD上運動.
(Ⅰ)求證:AC⊥平面BB1P;
(Ⅱ)若BP=1,設(shè)異面直線B1P與AC1所成的角為θ,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)y=$\sqrt{3-x}$+log2(x+1)的定義域為( 。
A.[-1,3)B.(-1,3)C.[-1,3]D.(-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.拋物線的頂點是橢圓$\frac{x^2}{25}+\frac{y^2}{16}=1$的中心,焦點是橢圓的右焦點,拋物線方程為y2=12x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在△ABC中,角A,B,C的對邊分別為a,b,c,且$a=4,cosA=\frac{3}{4},sinB=\frac{{5\sqrt{7}}}{16},c>4$.
(1)求b;
(2)已知△ABC內(nèi)切圓的半徑$r=\frac{2S}{l}$,其中S為△ABC的面積,l為△ABC的周長,求△ABC內(nèi)切圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,(2a-c)cosB=bcosC,sin2A=sin2B+sin2C-λsinBsinC.
(1)求角B的大小;
(2)若$λ=\sqrt{3}$,試判斷△ABC的形狀;
(3)若△ABC為鈍角三角形,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=4x2-mx+5在區(qū)間[-2,+∞)上是增函數(shù),則有( 。
A.f(1)≥25B.f(1)=25C.f(1)≤25D.f(1)>25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下面是函數(shù)y=f(x)的部分對應(yīng)值,則f[f($\sqrt{3}$)]等于( 。
x-3-2-10$\sqrt{2}$$\sqrt{3}$$\sqrt{5}$
y$\sqrt{3}$$\sqrt{2}$0$\sqrt{5}$-30-1
A.0B.$\sqrt{2}$C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若橢圓$\frac{x^2}{16}+\frac{y^2}{8}=1$的弦被點(2,1)平分,則此弦所在的直線方程是( 。
A.x+y-3=0B.x+2y-4=0C.2x+13y-14=0D.x+2y-8=0

查看答案和解析>>

同步練習(xí)冊答案