分析 (1)由f(1)=0,得到f(0)=-2,求出函數的表達式即可;
(2)得到x2-x+1=ax有解,分離a,得到a=x+$\frac{1}{x}$-1,令F(x)=x+$\frac{1}{x}$-1,x∈$(\frac{1}{2},2)$,根據函數的單調性求出即可;
(3)根據二次函數的性質得到9a2-2a+1+4ab>0,問題轉化為?a∈[1,$\frac{3}{2}$),使得-4b<9a+$\frac{1}{a}$-2成立,根據基本不等式的性質求出即可.
解答 解:(1)令y=0,則f(x)-f(0)=x(x+1),
又令x=1,則f(1)-f(0)=2,
∵f(1)=0,∴f(0)=-2,
∴f(x)=x2+x-2;
(2)∵f(x)=x2+x-2=(a+2)x-3,
∴x2-x+1=ax,
∵x∈$(\frac{1}{2},2)$,∴a=x+$\frac{1}{x}$-1,
令F(x)=x+$\frac{1}{x}$-1,x∈$(\frac{1}{2},2)$,
x∈($\frac{1}{2}$,1]時,F(x)單調遞減;x∈[1,2)時,F(x)單調遞增,
又$F(\frac{1}{2})=F(2)=\frac{3}{2},F(1)=1$,
∴$F(x)∈[1,\frac{3}{2})$.∴$A=\left\{{a|1≤a<\frac{3}{2}}\right\}$;
(3)由a(x2+x-2)=x+b,得ax2+(a-1)x-2a-b=0有兩不等實根,
依題意有△=(a-1)2+4a(2a+b)>0,
∴9a2-2a+1+4ab>0,
∴?a∈[1,$\frac{3}{2}$),使得-4b<9a+$\frac{1}{a}$-2成立,
令h(a)=9a+$\frac{1}{a}$-2,h′(a)=9-$\frac{1}{{a}^{2}}$=$\frac{(3a-1)(3a+1)}{{a}^{2}}$,
∵a∈[1,$\frac{3}{2}$)時,3a-1>0,3a+1>0,
故h′(a)>0,h(a)在[1,$\frac{3}{2}$)遞增,
即h(a)=9a+$\frac{1}{a}$-2單調遞增,
且a=$\frac{3}{2}$時,9a+$\frac{1}{a}$-2=$\frac{73}{6}$,
∴-4b<$\frac{73}{6}$,
∴b>-$\frac{73}{24}$.
點評 本題考查了二次函數的性質,函數的單調性問題,考查函數恒成立問題有解基本不等式的性質,是一道中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|x<-2或 x>1 } | B. | {x|-2<x<1 } | C. | {x|x<-1 或x>2 } | D. | {x|-1<x<2 } |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com